-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathladder.py
216 lines (175 loc) · 8.22 KB
/
ladder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import numpy as np
import torch
from torch import nn
from torch.nn.parameter import Parameter
import torch.nn.functional as F
class LinearLayer(nn.Module):
def __init__(self, d_in, d_out, bias=False, activation_function=None, noise_std=0.01):
super(LinearLayer, self).__init__()
self.linear = nn.Linear(d_in, d_out, bias=bias)
# weights init using xavier_uniform_
torch.nn.init.xavier_uniform_(self.linear.weight)
if bias:
self.linear.bias.data.fill_(0.01)
self.activation_function = activation_function
self.noise_std = noise_std
self.is_clean = 1
self.buffer = None
def forward(self, h):
if self.is_clean: return self.forward_clean(h)
else: return self.forward_noisy(h)
def forward_clean(self, h):
z = self.linear(h)
self.buffer = z.clone()
if self.activation_function:
z = self.activation_function(z)
return z
def forward_noisy(self, h):
z = self.linear(h)
# adding noise
noise = np.random.normal(loc=0.0, scale=self.noise_std, size=z.size())
noise = torch.tensor(noise, requires_grad=False).float()
z = z + noise
self.buffer = z.clone()
if self.activation_function:
z = self.activation_function(z)
return z
def set_clean(self, is_clean):
self.is_clean = is_clean
class Encoder(nn.Module):
def __init__(self, d_in, hidden_dims, d_out, n_layers, bias, activation_function, noise_std):
super(Encoder, self).__init__()
self.n_layers = n_layers
self.noise_std = noise_std
# Set a stack of the layers
self.stacked_layers = nn.Sequential()
self.stacked_layers.add_module("layer_0", LinearLayer(d_in, hidden_dims, bias, activation_function, noise_std))
for i in range(n_layers-1):
self.stacked_layers.add_module("layer_%s" % str(i+1), LinearLayer(hidden_dims, hidden_dims, bias, activation_function, noise_std))
self.stacked_layers.add_module("layer_%s" % str(n_layers), LinearLayer(hidden_dims, d_out, bias, None, noise_std))
# Buffer
self.clean_buffer = None
self.noisy_buffer = None
def forward(self, h, is_clean=True, is_cache=False):
# Set the FWD mode
for i in range(len(self.stacked_layers)):
self.stacked_layers[i].set_clean(is_clean)
# FWD
if is_clean:
input_tensor = h
z = self.stacked_layers(input_tensor)
else:
noise = np.random.normal(loc=0.0, scale=self.noise_std, size=h.size())
noise = torch.tensor(noise, requires_grad=False).float()
input_tensor = h + noise
z = self.stacked_layers(input_tensor)
# Caching
if is_cache:
self.cache_hidden_states(input_tensor, is_clean)
return z
def cache_hidden_states(self, input_tensor, is_clean=True):
if is_clean:
self.clean_buffer = [input_tensor]+[self.stacked_layers[i].buffer for i in range(len(self.stacked_layers))]
else:
self.noisy_buffer = [input_tensor]+[self.stacked_layers[i].buffer for i in range(len(self.stacked_layers))]
class DecoderLayer(nn.Module):
def __init__(self, d_in, d_out, bias):
super(DecoderLayer, self).__init__()
self.d_in = d_in
self.d_out = d_out
self.a1 = Parameter(0. * torch.ones(1, d_in))
self.a2 = Parameter(1. * torch.ones(1, d_in))
self.a3 = Parameter(0. * torch.ones(1, d_in))
self.a4 = Parameter(0. * torch.ones(1, d_in))
self.a5 = Parameter(0. * torch.ones(1, d_in))
self.a6 = Parameter(0. * torch.ones(1, d_in))
self.a7 = Parameter(1. * torch.ones(1, d_in))
self.a8 = Parameter(0. * torch.ones(1, d_in))
self.a9 = Parameter(0. * torch.ones(1, d_in))
self.a10 = Parameter(0. * torch.ones(1, d_in))
if self.d_out is not None:
self.V = torch.nn.Linear(d_in, d_out, bias=bias)
torch.nn.init.xavier_uniform_(self.V.weight)
if bias:
self.V.bias.data.fill_(0.01)
# buffer for hat_z_l to be used for cost calculation
self.buffer = None
def g(self, tilde_z_l, u_l):
ones = Parameter(torch.ones(tilde_z_l.size()[0], 1))
b_a1 = ones.mm(self.a1)
b_a2 = ones.mm(self.a2)
b_a3 = ones.mm(self.a3)
b_a4 = ones.mm(self.a4)
b_a5 = ones.mm(self.a5)
b_a6 = ones.mm(self.a6)
b_a7 = ones.mm(self.a7)
b_a8 = ones.mm(self.a8)
b_a9 = ones.mm(self.a9)
b_a10 = ones.mm(self.a10)
mu_l = torch.mul(b_a1, torch.sigmoid(torch.mul(b_a2, u_l) + b_a3)) + torch.mul(b_a4, u_l) + b_a5
v_l = torch.mul(b_a6, torch.sigmoid(torch.mul(b_a7, u_l) + b_a8)) + torch.mul(b_a9, u_l) + b_a10
hat_z_l = torch.mul(tilde_z_l - mu_l, v_l) + mu_l
return hat_z_l
def forward(self, tilde_z_l, u_l):
# hat_z_l will be used for calculating decoder costs
hat_z_l = self.g(tilde_z_l, u_l)
# store hat_z_l in buffer for cost calculation
self.buffer = hat_z_l
if self.d_out is not None:
return self.V(hat_z_l)
else:
return None
class Decoder(nn.Module):
def __init__(self, d_in, hidden_dims, d_out, n_layers, bias):
super(Decoder, self).__init__()
self.n_layers = n_layers
self.stacked_layers = nn.Sequential()
self.stacked_layers.add_module("layer_0", DecoderLayer(d_in, hidden_dims, bias=bias))
for i in range(n_layers-1):
self.stacked_layers.add_module("layer_%s" % str(i+1), DecoderLayer(hidden_dims, hidden_dims, bias=bias))
self.stacked_layers.add_module("layer_%s" % str(n_layers), DecoderLayer(hidden_dims, d_out, bias=bias))
self.bottom_decoder = DecoderLayer(d_out, None, bias=bias)
def forward(self, tilde_z_states, top):
# tilde_z_states should be in the reversed order of encoders
hat_z = []
for i in range(len(self.stacked_layers)):
top = self.stacked_layers[i](tilde_z_states[i], top)
hat_z.append(self.stacked_layers[i].buffer)
self.bottom_decoder(tilde_z_states[-1], top)
hat_z.append(self.bottom_decoder.buffer.clone())
return hat_z
class LadderNetwork(nn.Module):
def __init__(self, d_in, hidden_dims, d_out, n_layers, bias, activation_function, noise_std):
super(LadderNetwork, self).__init__()
encoder_bias, decoder_bias = bias
self.encoder = Encoder(d_in, hidden_dims, d_out, n_layers, encoder_bias, activation_function, noise_std=noise_std)
self.decoder = Decoder(d_out, hidden_dims, d_in, n_layers, decoder_bias)
def forward(self, x, include_unsup=True):
clean_out = self.encoder(x, is_clean=True, is_cache=True)
ladder_loss = None
if include_unsup:
noisy_out = self.encoder(x, is_clean=False, is_cache=True)
# decoding, [::-1] => reversing the list
noisy_buffer = self.encoder.noisy_buffer[::-1]
decoder_outputs = self.decoder(noisy_buffer, noisy_out)
ladder_loss = self.unsupervised_loss(decoder_outputs, self.encoder.clean_buffer)
return clean_out, ladder_loss
def unsupervised_loss(self, decoder_outputs, clean_buffer):
loss = 0.0
for i in range(len(decoder_outputs)):
loss += F.mse_loss(clean_buffer[i], decoder_outputs[len(decoder_outputs)-(i+1)])
return loss
if __name__ == "__main__":
d_in, hidden_dims, d_out = 2, 50, 1
bias = False, False
n_layers = 1 # This counts the number of fully connected layers in a network.
activation_function = torch.tanh
noise_std = 0.01
inpp = torch.rand(100, 2)
network = LadderNetwork(d_in=d_in, hidden_dims=hidden_dims,
d_out=d_out, n_layers=n_layers, bias=bias,
activation_function=activation_function, noise_std=noise_std)
u, unsup_loss = network(inpp)
print(u)
print(unsup_loss)
print("Test passing")