forked from 0xmaskx/UnstructuredTranscriptSummarizer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfollow_topic.py
76 lines (63 loc) · 2.57 KB
/
follow_topic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import re
import os
import json
import openai
import textwrap
from time import time,sleep
def open_file(filepath):
with open(filepath, 'r', encoding='utf-8') as infile:
return infile.read()
def save_file(filepath, content):
with open(filepath, 'w', encoding='utf-8') as outfile:
outfile.write(content)
def save_json(filepath, payload):
with open(filepath, 'w', encoding='utf-8') as outfile:
json.dump(payload, outfile, ensure_ascii=False, sort_keys=True, indent=1)
openai.api_key = open_file('openaiapikey.txt')
def gpt3_completion(prompt, engine='text-davinci-002', temp=0.3, top_p=1.0, tokens=2000, freq_pen=0.0, pres_pen=0.0, stop=['asdfasdf', 'asdasdf']):
max_retry = 5
retry = 0
prompt = prompt.encode(encoding='ASCII',errors='ignore').decode() # force it to fix any unicode errors
while True:
try:
response = openai.Completion.create(
engine=engine,
prompt=prompt,
temperature=temp,
max_tokens=tokens,
top_p=top_p,
frequency_penalty=freq_pen,
presence_penalty=pres_pen,
stop=stop)
text = response['choices'][0]['text'].strip()
#text = re.sub('\s+', ' ', text)
filename = '%s_gpt3.txt' % time()
if not os.path.exists('gpt3_logs'):
os.makedirs('gpt3_logs')
save_file('gpt3_logs/%s' % filename, prompt + '\n\n==========\n\n' + text)
return text
except Exception as oops:
retry += 1
if retry >= max_retry:
return "GPT3 error: %s" % oops
print('Error communicating with OpenAI:', oops)
sleep(1)
if __name__ == '__main__':
files = os.listdir('transcripts/')
topic = "AI Ethics"
for file in files:
transcript = open_file('transcripts/%s' % file)
chunks = textwrap.wrap(transcript, 6000)
output = ''
for chunk in chunks:
# get topics
prompt = open_file('prompt_detailed_notes.txt').replace('<<TRANSCRIPT>>', chunk).replace('<<TOPIC>>', topic)
notes = gpt3_completion(prompt)
print('\n\n', notes)
output += '\n\n%s' % notes
# rewrite topical notes as one flowing narrative
prompt = open_file('prompt_flowing_coherent_narrative.txt').replace('<<NOTES>>', output.strip())
final = gpt3_completion(prompt)
# save out to file
filename = 'insights/%s_%s' % (topic.replace(' ','_'), file)
save_file(filename, final)