-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathtfidf_guesser.py
186 lines (138 loc) · 6.29 KB
/
tfidf_guesser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from typing import List, Optional, Tuple
from collections import defaultdict
import pickle
import json
import argparse
from os import path
from typing import Union, Dict
from sklearn.feature_extraction.text import TfidfVectorizer
from qanta_util.qbdata import QantaDatabase
from tfidf_guesser_test import StubDatabase
from sgd import kBIAS
MODEL_PATH = 'tfidf.pickle'
BUZZ_NUM_GUESSES = 10
BUZZ_THRESHOLD = 0.3
class TfidfGuesser:
"""
Class that, given a query, finds the most similar question to it.
"""
def __init__(self):
"""
Initializes data structures that will be useful later.
"""
# You may want to add addtional data members
self.tfidf_vectorizer = None
self.tfidf_matrix = None
def train(self, training_data: Union[StubDatabase, QantaDatabase], limit=-1) -> None:
"""
Use a tf-idf vectorizer to analyze a training dataset and to process
future examples.
Keyword arguments:
training_data -- The dataset to build representation from
limit -- How many training data to use (default -1 uses all data)
"""
questions = [x.text for x in training_data.guess_train_questions]
answers = [x.page for x in training_data.guess_train_questions]
if limit > 0:
questions = questions[:limit]
answers = answers[:limit]
# Your code here
def guess(self, questions: List[str], max_n_guesses: Optional[int]) -> List[List[Tuple[str, float]]]:
"""
Given the text of questions, generate guesses (a list of both both the page id and score) for each one.
Keyword arguments:
questions -- Raw text of questions in a list
max_n_guesses -- How many top guesses to return
"""
guesses = []
return guesses
def confusion_matrix(self, evaluation_data: QantaDatabase, limit=-1) -> Dict[str, Dict[str, int]]:
"""
Given a matrix of test examples and labels, compute the confusion
matrixfor the current classifier. Should return a dictionary of
dictionaries where d[ii][jj] is the number of times an example
with true label ii was labeled as jj.
:param evaluation_data: Database of questions and answers
:param limit: How many evaluation questions to use
"""
# Finish this function to build a dictionary with the
# mislabeled examples. You'll need to call the guess
# function.
questions = [x.text for x in evaluation_data.guess_dev_questions]
answers = [x.page for x in evaluation_data.guess_dev_questions]
if limit > 0:
questions = questions[:limit]
answers = answers[:limit]
d = defaultdict(dict)
return d
# You won't need this for this homework, but it will generate the data for a
# future homework; included for reference.
def write_guess_json(guesser, filename, fold, run_length=200, censor_features=["id", "label"], num_guesses=5):
"""
Returns the vocab, which is a list of all features.
"""
vocab = [kBIAS]
print("Writing guesses to %s" % filename)
num = 0
with open(filename, 'w') as outfile:
total = len(fold)
for qq in fold:
num += 1
if num % (total // 80) == 0:
print('.', end='', flush=True)
runs = qq.runs(run_length)
guesses = guesser.guess(runs[0], max_n_guesses=5)
for rr in runs[0]:
guesses = guesser.guess([rr], max_n_guesses=num_guesses)
for raw_guess in guesses[0]:
gg, ss = raw_guess
guess = {"id": qq.qanta_id,
"guess:%s" % gg: 1,
"run_length": len(rr)/1000,
"score": ss,
"label": qq.page==gg,
"category:%s" % qq.category: 1,
"year:%s" % qq.year: 1}
for ii in guess:
# Don't let it use features that would allow cheating
if ii not in censor_features and ii not in vocab:
vocab.append(ii)
outfile.write(json.dumps(guess, sort_keys=True))
outfile.write("\n")
print("")
return vocab
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--guesstrain", default="data/small.guesstrain.json", type=str)
parser.add_argument("--guessdev", default="data/small.guessdev.json", type=str)
parser.add_argument("--buzztrain", default="data/small.buzztrain.json", type=str)
parser.add_argument("--buzzdev", default="data/small.buzzdev.json", type=str)
parser.add_argument("--limit", default=-1, type=int)
parser.add_argument("--vocab", default="", type=str)
parser.add_argument("--buzztrain_predictions", default="", type=str)
parser.add_argument("--buzzdev_predictions", default="", type=str)
flags = parser.parse_args()
print("Loading %s" % flags.guesstrain)
guesstrain = QantaDatabase(flags.guesstrain)
guessdev = QantaDatabase(flags.guessdev)
tfidf_guesser = TfidfGuesser()
tfidf_guesser.train(guesstrain, limit=flags.limit)
confusion = tfidf_guesser.confusion_matrix(guessdev, limit=-1)
print("Errors:\n=================================================")
for ii in confusion:
for jj in confusion[ii]:
if ii != jj:
print("%i\t%s\t%s\t" % (confusion[ii][jj], ii, jj))
if flags.buzztrain_predictions:
print("Loading %s" % flags.buzztrain)
buzztrain = QantaDatabase(flags.buzztrain)
vocab = write_guess_json(tfidf_guesser, flags.buzztrain_predictions, buzztrain.buzz_train_questions)
if flags.vocab:
with open(flags.vocab, 'w') as outfile:
for ii in vocab:
outfile.write("%s\n" % ii)
if flags.buzzdev_predictions:
assert flags.buzztrain_predictions, "Don't have vocab if you don't do buzztrain"
print("Loading %s" % flags.buzzdev)
buzzdev = QantaDatabase(flags.buzzdev)
write_guess_json(tfidf_guesser, flags.buzzdev_predictions, buzzdev.buzz_dev_questions)