-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathlr_pytorch.py
152 lines (118 loc) · 5.14 KB
/
lr_pytorch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# Developed from Code from Alex Jian Zheng
import random
import math
import torch
import torch.nn as nn
import numpy as np
from numpy import zeros, sign
from math import exp, log
from collections import defaultdict
import json
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
import argparse
from sgd import Example
torch.manual_seed(1701)
class GuessDataset(Dataset):
def __init__(self, vocab):
self.vocab = vocab
# Just create some dummy data so unit tests will fail rather than cause error
self.num_features = len(vocab)
self.feature = zeros((5, self.num_features))
self.label = zeros((5, 1))
self.num_samples = 5
# support indexing such that dataset[i] can be used to get i-th sample
def __getitem__(self, index):
return self.feature[index], self.label[index]
# we can call len(dataset) to return the size
def __len__(self):
return self.num_samples
def initialize(self, filename):
# Complete this function to actually populate the feature and label members of the class with non-zero data.
# You may want to use numpy's fromiter function
assert self.num_samples == len(self.feature)
None
class SimpleLogreg(nn.Module):
def __init__(self, num_features):
"""
Initialize the parameters you'll need for the model.
:param num_features: The number of features in the linear model
"""
super(SimpleLogreg, self).__init__()
# Replace this with a real nn.Module
self.linear = None
def forward(self, x):
"""
Compute the model prediction for an example.
:param x: Example to evaluate
"""
return 0.5
def evaluate(self, data):
"""
Computes the accuracy of the model.
"""
# No need to modify this function.
with torch.no_grad():
y_predicted = self(data.feature)
y_predicted_cls = y_predicted.round()
acc = y_predicted_cls.eq(data.label).sum() / float(data.label.shape[0])
return acc
def step(epoch, ex, model, optimizer, criterion, inputs, labels):
"""Take a single step of the optimizer, we factored it into a single
function so we could write tests. You should: A) get predictions B)
compute the loss from that prediction C) backprop D) update the
parameters
There's additional code to print updates (for good software
engineering practices, this should probably be logging, but printing
is good enough for a homework).
:param epoch: The current epoch
:param ex: Which example / minibatch you're one
:param model: The model you're optimizing
:param inputs: The current set of inputs
:param labels: The labels for those inputs
"""
if (ex+1) % 20 == 0:
acc_train = model.evaluate(train)
acc_test = model.evaluate(test)
print(f'Epoch: {epoch+1}/{num_epochs}, Example {ex}, loss = {loss.item():.4f}, train_acc = {acc_train.item():.4f} test_acc = {acc_test.item():.4f}')
if __name__ == "__main__":
argparser = argparse.ArgumentParser()
#''' Switch between the toy and REAL EXAMPLES
argparser.add_argument("--buzztrain", help="Positive class",
type=str, default="data/small_guess.buzztrain.jsonl")
argparser.add_argument("--buzzdev", help="Negative class",
type=str, default="data/small_guess.buzzdev.jsonl")
argparser.add_argument("--vocab", help="Vocabulary that can be features",
type=str, default="data/small_guess.vocab")
argparser.add_argument("--passes", help="Number of passes through train",
type=int, default=5)
argparser.add_argument("--batch", help="Number of items in each batch",
type=int, default=1)
argparser.add_argument("--learnrate", help="Learning rate for SGD",
type=float, default=0.1)
args = argparser.parse_args()
with open(args.vocab, 'r') as infile:
vocab = [x.strip() for x in infile]
train = GuessDataset(vocab)
test = GuessDataset(vocab)
train.initialize(args.buzztrain)
test.initialize(args.buzzdev)
print("Read in %i train and %i test" % (len(train), len(test)))
# Initialize model
logreg = SimpleLogreg(train.num_features)
num_epochs = args.passes
batch = args.batch
total_samples = len(train)
# Replace these with the correct loss and optimizer
criterion = None
optimizer = None
train_loader = DataLoader(dataset=train,
batch_size=batch,
shuffle=True,
num_workers=0)
dataiter = iter(train_loader)
# Iterations
for epoch in range(num_epochs):
for ex, (inputs, labels) in enumerate(train_loader):
# Run your training process
step(epoch, ex, logreg, optimizer, criterion, inputs, labels)