-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
618 lines (535 loc) · 31.8 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
import numpy as np
from torch.nn.functional import mse_loss
import torch
import torch.nn.functional as F
import itertools
from os import listdir
from scipy.ndimage import gaussian_filter1d
from scipy.ndimage import uniform_filter1d
import matplotlib.pyplot as plt
from scipy import signal
from scipy.signal import resample
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# Utility functions for Mazzler interaction and corresponding models
# Load data from numpy files
def get_data(train_with_live_data=True, difference_model=False, smooth_states=False, kernel_size = 25, norm_states=False, train_with_hole_data=False, norm_power=False, norm_power_max=0.05):
if difference_model:
states = torch.tensor([])
actions = torch.tensor([])
else:
power_set = np.load('/home/bethke52/laser_data/historic_data/historic_power_set.npy')#[:1]
setting_set = np.load('/home/bethke52/laser_data/historic_data/historic_setting_set.npy')#[:1]
spectrum_set = np.load('/home/bethke52/laser_data/historic_data/historic_spectra_set.npy')#[:1]
states = torch.tensor(np.array([np.concatenate([spectrum_set[i,0,:,1]/3500,spectrum_set[i,1,:,1]/2000]) for i in range(spectrum_set.shape[0])]))
actions = torch.tensor(np.array([np.concatenate([np.array([power_set[i]]),setting_set[i,:,1]]) for i in range(setting_set.shape[0])]))
if train_with_live_data:
live_sets = [["live_set_22_09_12","live_2022_09_12/spectra/2022.09.12_13.37.17_start2.txt"],
["live_set_22_09_26","live_2022_09_26/new_set/26/2022.09.26_13.25.18_start.txt"],
["live_set_22_10_14","2022_10_14_spectrumAI/loop_set/spectra/2022.10.14_11.33.58_loop_start.txt"],
["model_set_22_09_26","live_2022_09_26/new_set/26/2022.09.26_13.25.18_start.txt"],
["model_set_22_10_14","2022_10_14_spectrumAI/model_set/spectra/2022.10.14_10.41.59_start.txt"],
["model_set_22_10_20","live_2022_10_20/spectra/model/2022.10.20_14.34.45_start2.txt"],
["model_set_22_11_08","20221108FriedrichBethke/spectra/08/2022.11.08_14.26.38_ohne_mazzler.txt"],
["model_set_22_11_10","2022_11_10_Friedrich_Daten/spectra/2022.11.10_10.12.04_start.txt"],
["model_set_23_02_14", "live_2023_02_14/spectra/start_2_2023.02.14_10.57.48.txt"],
["model_set_23_02_15", 'live_2023_02_15/spectra/start_1_2023.02.15_08.58.08.txt']
]
if train_with_hole_data:
live_sets.append(["hole_live_set_22_10_20","live_2022_10_20/spectra/loop/2022.10.20_13.53.12_start.txt"])
for live_set in live_sets:
# Load data
power_loop = np.load('/home/bethke52/laser_data/live_data/power_{}.npy'.format(live_set[0]))
setting_loop= np.load('/home/bethke52/laser_data/live_data/setting_base_{}.npy'.format(live_set[0]))
spectrum_loop = np.load('/home/bethke52/laser_data/live_data/spectrum_{}.npy'.format(live_set[0]))
spectrum_start = np.loadtxt('/home/bethke52/laser_data/{}'.format(live_set[1]))
# norm step
setting_loop= norm_np(setting_loop, axis=1)
# Get state/action pairs in historic data fashion
if difference_model:
loop_states, loop_actions = get_state_acion_from_loop_set(power_loop, setting_loop, spectrum_loop)
else:
loop_states, loop_actions = get_historic_states_actions(spectrum_start,spectrum_loop,power_loop,setting_loop)
states = torch.cat([states, loop_states])
actions = torch.cat([actions,loop_actions])
#if smooth_states:
# states = torch.nn.AvgPool1d(kernel_size=kernel_size, stride=1, padding=kernel_size//2)(states)
#if norm_states:
# states = torch.cat([norm_tensor(states[:,:2048], dim=1),norm_tensor(states[:,2048:], dim=1)], dim=1)
if smooth_states:
states = torch.nn.AvgPool1d(kernel_size=kernel_size, stride=1, padding=kernel_size//2)(states)
if norm_states:
states = torch.cat([norm_tensor(states[:,:2048], dim=1),norm_tensor(states[:,2048:], dim=1)], dim=1)
if norm_power:
actions[:,0] = actions[:,0]/norm_power_max
return states, actions
# Write setting files for mazzler
def write_setting(power, wave_values, norm, file_name, base_setting='./live_2022_09_12/20220912FriedrichBethke/base_config',base_path='generated_settings/'):
with open(base_setting) as f:
lines = np.array(f.readlines())
lines[2136] = 'Norm = +{:.6f}E-3\n'.format(norm*1000)
lines[17] = 'power={:.6f}\n'.format(power)
lines[22:2069] = np.array([lines[22:2069][i].split('\t')[0]+'\t'+'{:.6f}'.format(wave_values[i])+'\n' for i in range(len(lines[22:2069]))])
with open(base_path+file_name, 'w') as f:
f.writelines(lines)
return
# Read setting files from mazzler
def read_setting(path, return_lines = False):
with open(path) as f:
lines = np.array(f.readlines())
if return_lines:
return lines
else:
power = float(lines[17][6:-1])
setting = np.array([i[:-1].split('\t') for i in lines[22:2069]]).astype(float)
norm = float(lines[2136][7:])
return setting, power, norm
# A funicton to test a model with a loader and mse loss
def test(loader, model):
model.eval()
loss = 0
for x,y in loader:
with torch.no_grad():
loss += mse_loss(model(x.cuda()).squeeze(), y.cuda()).item()
return loss/len(loader)
# Get values from a normal distribution
def gauss_range(num_vals, bound = 3, sigma = 1, mu = 0, norm_factor=None):
t_range = torch.arange(num_vals)
norm_t_range = (bound*2)*((t_range-t_range.min())/(t_range.max()-t_range.min()))-bound
gauss_values = 1/(sigma * torch.sqrt(torch.tensor(2 * np.pi))) * torch.exp( - (norm_t_range - mu)**2 / (2 * sigma**2) )
gauss_values = gauss_values if norm_factor == None else gauss_values / (norm_factor*gauss_values.max())
return gauss_values
# Normalization function
def norm(data, norm_factor=1, minmax_norm=True):
if minmax_norm:
return (data-data.min()[...,np.newaxis])/(norm_factor*data.max()[...,np.newaxis]-data.min()[...,np.newaxis])
else:
return (data)/(norm_factor*data.max()[...,np.newaxis])
def norm_np(data, norm_factor=1, axis=None):
return (data-data.min(axis=axis)[...,np.newaxis])/(norm_factor*data.max(axis=axis)[...,np.newaxis]-data.min(axis=axis)[...,np.newaxis])
def norm_tensor(data, norm_factor=1, dim=None, minmax_norm=True):
if minmax_norm:
return (data- data.amin(dim=dim).unsqueeze(1))/(norm_factor*data.amax(dim=dim).unsqueeze(1)- data.amin(dim=dim).unsqueeze(1))
else:
return data/(norm_factor*data.amax(dim=dim).unsqueeze(1))
# Find the nearest element in a array
def find_nearest(array, value):
array = np.asarray(array)
idx = (np.abs(array - value)).argmin()
return array[idx]
# Get a difference set from a loop set
def get_state_acion_from_loop_set(power_set, setting_set, spectrum_set, norm=900):
samples = list(itertools.product(np.arange(len(power_set)), np.arange(len(power_set))))
states = []
actions = []
for sample in samples:
state = torch.cat([torch.tensor(spectrum_set[sample[0]]), torch.tensor(spectrum_set[sample[1]])])
setting_difference = setting_set[sample[1]]-setting_set[sample[0]]
power_difference = [power_set[sample[1]]-power_set[sample[0]]]
action = torch.cat([torch.tensor(power_difference), torch.tensor(setting_difference)])
actions.append(action)
states.append(state)
states = torch.stack(states)/900
actions = torch.stack(actions)
return states, actions
# Get a historic state action pairs from a set (i.e. loop)
def get_historic_states_actions(start_spectrum,spectrum_set, power_set, setting_set, agent=True):
if agent:
states = torch.tensor(np.concatenate([start_spectrum[:,1:].transpose().repeat(spectrum_set.shape[0],axis=0)/3500, spectrum_set/2000], axis=1)).float()
actions = torch.tensor(np.array([np.concatenate([np.array([power_set[i]]),setting_set[i,:]]) for i in range(setting_set.shape[0])])).float()
return states, actions
else:
state_action = torch.tensor(np.concatenate([start_spectrum[:,1:].transpose().repeat(spectrum_set.shape[0],axis=0)/3500, spectrum_set/2000], axis=1)).float()
next_states = torch.tensor(np.array([np.concatenate([np.array([power_set[i]]),setting_set[i,:]]) for i in range(setting_set.shape[0])])).float()
return state_action, next_states
# Get set from manual files:
def get_model_set(step_paths, base_path_settings, base_path_spectra, set_name,save=False):
power_set = []
setting_base_set = []
spectrum_set = []
for step in step_paths:
spectrum = np.loadtxt(base_path_spectra+step[0])
setting, power,norm = read_setting(base_path_settings+step[1])
setting_base_set.append(setting[:,1])
power_set.append(power)
spectrum_set.append(spectrum[:,1])
setting_base_set = np.array(setting_base_set).astype(float)
power_set = np.array(power_set).astype(float)
spectrum_set = np.array(spectrum_set).astype(float)
if save:
np.save('setting_base_{}'.format(set_name), setting_base_set)
np.save('power_{}'.format(set_name), power_set)
np.save('spectrum_{}'.format(set_name), spectrum_set)
return setting_base_set, power_set, spectrum_set
# Get a loop set from data
def get_loop_set(setting_path, spectrum_path, start_time, set_name, save=False):
setting_list = [file for file in listdir(setting_path) if "ipynb" not in file]
setting_list.sort()
spectrum_list = [file for file in listdir(spectrum_path) if file[-3:] == 'txt']
spectrum_list_file_order = [int(file[11:19].replace('.','')) for file in spectrum_list if int(file[11:19].replace('.',''))>start_time]
spectrum_list_file_order.sort()
print(setting_list)
setting_base_set = []
setting_set = []
power_set = []
spectrum_set = []
for i in range(len(setting_list)):
setting_file = setting_list[i]
spectrum_file = [spec for spec in spectrum_list if int(spec[11:19].replace('.','')) == spectrum_list_file_order[i]][0]
spectrum= np.loadtxt(spectrum_path+'{}'.format(spectrum_file))
x = spectrum[:,0]
setting, power,norm = read_setting(setting_path+'{}'.format(setting_file))
setting_interp = np.interp(x,setting[:,0],setting[:,1])
setting_base_set.append(setting[:,1])
setting_set.append(setting_interp)
power_set.append(power)
spectrum_set.append(spectrum[:,1])
setting_set = np.array(setting_set).astype(float)
power_set = np.array(power_set).astype(float)
spectrum_set = np.array(spectrum_set).astype(float)
settting_base_set = np.array(setting_base_set).astype(float)
if save:
np.save('setting_base_{}'.format(set_name), setting_base_set)
np.save('power_{}'.format(set_name), power_set)
np.save('setting_{}'.format(set_name), setting_set)
np.save('spectrum_{}'.format(set_name), spectrum_set)
return setting_set, power_set, spectrum_set, setting_base_set
# Get the norm value based on closest power value in a set
def get_norm_from_data(power, norm_path = '/home/bethke52/laser_data/historic_data/norm_power_historic.npy'):
norm_power = np.load(norm_path)
mean_norm_power = []
for power in np.unique(norm_power[0,:]):
mean_norm = np.mean(norm_power[1,np.where(power == norm_power[0,:])[0]])
mean_norm_power.append([power, mean_norm])
mean_norm_power = np.array(mean_norm_power)
return mean_norm_power[np.where(find_nearest(mean_norm_power[:,0],power)==mean_norm_power[:,0])[0],1][0]
# Get the target from closest max intestity of a set
def get_target_from_max(start, spectrum_set_path='/home/bethke52/laser_data/historic_data/historic_spectra_set.npy', smooth=True):
spectrum_set = np.load(spectrum_set_path)
# Get step from max val target to max val start relation
max_start = []
for i in spectrum_set:
max_start.append(gaussian_filter1d(i[0,:,1], sigma=6).max())
max_start = np.array(max_start)
max_val = gaussian_filter1d(start[:,1], sigma=6).max()
step = spectrum_set[np.where(find_nearest(max_start,max_val)==max_start)[0]][0,1]
return step
# Get the target from closest max intestity of a set
def get_target_from_data(start, spectrum_set_path='/home/bethke52/laser_data/historic_data/historic_spectra_set.npy', smooth=True, return_step_start=False, normed=False):
spectrum_set = np.load(spectrum_set_path)
start = start[:,1]
if smooth:
start = gaussian_filter1d(start, sigma=6)
if normed:
start = norm(start)
# Get step from max val target to max val start relation
mean_abs_diff= []
for i in spectrum_set:
if normed:
mean_abs_diff.append(abs(norm(gaussian_filter1d(i[0,:,1], sigma=6))-start).mean())
else:
mean_abs_diff.append(abs(gaussian_filter1d(i[0,:,1], sigma=6)-start).mean())
mean_abs_diff = np.array(mean_abs_diff)
closest_idx = mean_abs_diff.argsort()
step = spectrum_set[closest_idx[0]][1]
step_start = spectrum_set[closest_idx[0]][0]
if return_step_start:
return step, step_start
else:
return step
# Get a small array of targets derived from a base loop target
def differ_targets(target, smooth=True, smooth_ramp=False, smooth_step=False, shift=50, dynamic_resampling=False):
target = target.copy()
target_smooth = gaussian_filter1d(target[:,1], sigma=6)
if smooth:
target[:,1] = target_smooth
target_shift_left = np.concatenate([target[shift:,1], target[:shift,1]])
target_shift_right = np.concatenate([ target[-shift:,1],target[:-shift,1],])
sigma= 0.15
gauss_1 = gauss_range(target[:,1].shape[0], sigma=sigma, mu=-0.2).detach().numpy()*50 + target[:,1]
gauss_2 = gauss_range(target[:,1].shape[0], sigma=sigma, mu=0).detach().numpy()*50 + target[:,1]
gauss_3 = gauss_range(target[:,1].shape[0], sigma=sigma, mu=-0.45).detach().numpy()*50 + target[:,1]
gauss_1 = (gauss_1/gauss_1.max()) * target[:,1].max()
gauss_2 = (gauss_2/gauss_2.max()) * target[:,1].max()
gauss_3 = (gauss_3/gauss_3.max()) * target[:,1].max()
left_arrange =260-50
right_arrange =440-50
step_target = np.concatenate([np.zeros(512+left_arrange),np.ones(1024-left_arrange-right_arrange),np.zeros(512+right_arrange)])*350
pointy_target = np.concatenate([np.zeros(193*3),np.arange(378),np.arange(378)[::-1],np.zeros(238*3-1)])*0.9
ramp_target_lr = np.concatenate([np.zeros(193*3+160),np.arange(2*378-160)[::-1],np.zeros(238*3-1)])*0.9
ramp_target_lr_small = np.concatenate([np.zeros(193*3+160),np.arange(2*378-160-120)[::-1],np.zeros(238*3-1+120)])*0.9
ramp_target_rl = np.concatenate([np.zeros(193*3+160),np.arange(2*378-160),np.zeros(238*3-1)])*0.9
if smooth_ramp:
ramp_target_lr = gaussian_filter1d(ramp_target_lr, sigma=45)
ramp_target_rl = gaussian_filter1d(ramp_target_rl, sigma=45)
ramp_target_lr_small = gaussian_filter1d(ramp_target_lr_small, sigma=45)
if smooth_step:
step_target = gaussian_filter1d(step_target, sigma=45)
target_labels = ["gauss_1","gauss_2","gauss_3", "target_shift_left", "target_shift_right", "target_smooth", "step_target", "pointy_target", "ramp_target_lr", "ramp_target_rl", "ramp_traget_lr_small"]
targets = [gauss_1,gauss_2,gauss_3, target_shift_left, target_shift_right, target_smooth, step_target, pointy_target, ramp_target_lr, ramp_target_rl, ramp_target_lr_small]
# Dynamic resampling
if dynamic_resampling:
non_zero_idx_step = np.where(norm(target[:,1]) > 0.002)[0]
for i in range(6,len(targets)):
non_zero_idx_target = np.where(norm(targets[i]) > 0.002)[0]
target_non_zero_resample = resample(targets[i][non_zero_idx_target.min():non_zero_idx_target.max()], non_zero_idx_step.max()-non_zero_idx_step.min())
target_resample = norm(target[:,1].copy())
target_resample[non_zero_idx_step.min():non_zero_idx_step.max()] = norm(target_non_zero_resample)
targets[i] = target_resample
return np.array(targets), np.array(target_labels)
# Perform live-inference with multiple targets on a history-based agent
def multi_target_inference(start, agent, model_name = '', fixed=None, save_file=False, base_name="Friedrich_Bethke_test_setting",smooth_targets= True, smooth_settings=False, downsampling_rate=None, smooth_move_to_zero=False, smooth_states = False, norm_states = False, kernel_size=25, smooth_ramp=False, normed=False, dynamic_resampling=False, smooth_step=False, power_norm=False):
# Get loop step
if fixed == None:
step = get_target_from_data(start, normed=normed)
else:
step = np.loadtxt(fixed)
# Get differed targets
targets, target_labels = differ_targets(step, smooth_targets, smooth_ramp, dynamic_resampling=dynamic_resampling, smooth_step=smooth_step)
# Creates states
states = torch.tensor(np.concatenate([np.repeat(start[:,1][np.newaxis,...]/3500,targets.shape[0],axis=0),targets/2000], axis=1)).float().to(device)
if smooth_states:
states = torch.nn.AvgPool1d(kernel_size=kernel_size, stride=1, padding=kernel_size//2)(states)
if norm_states:
states = torch.cat([norm_tensor(states[:,:2048], dim=1),norm_tensor(states[:,2048:], dim=1)], dim=1)
if downsampling_rate != None:
states = F.interpolate(states.unsqueeze(0), (downsampling_rate*2)).squeeze(0)
predicted_action = agent(states)
if downsampling_rate != None:
predicted_action = torch.cat([predicted_action[:,0].unsqueeze(1),F.interpolate(predicted_action[:,1:].unsqueeze(0), (2047)).squeeze(0)], dim=1)
power = np.clip(predicted_action[:,0].cpu().detach().numpy(),0,1)
if power_norm:
power = power * 0.05
wave_values = torch.clip(predicted_action[:,1:],0,1).cpu().detach().numpy()
if smooth_settings:
wave_values = np.clip(np.array([gaussian_filter1d(i,sigma=6) for i in wave_values]),0,1)
if smooth_move_to_zero:
wave_values = np.array([move_to_zero(i) for i in wave_values])
norm = get_norm_from_data(power)
if save_file:
for i in range(wave_values.shape[0]):
file_name = base_name+"_{}_{}_{}_{}_{}".format(target_labels[i],"fixed" if fixed != None else "notFixed", model_name, smooth_targets, dynamic_resampling)
write_setting(power[i], wave_values[i], norm, file_name)
return power, wave_values, norm, targets, target_labels
# Savety check based on smoothed setting: suggested thres range [0.05,0.07]
def eval_signal(signal, sigma=9, plot=False, relative=False, lower=-0.07, upper=0.07, figsize=(8,5), return_signal = False, title=None):
smooth_sig = gaussian_filter1d(signal, sigma=sigma)
if relative:
smooth_sig_upper = smooth_sig*upper
smooth_sig_lower = smooth_sig*lower
else:
smooth_sig_upper = smooth_sig+upper
smooth_sig_lower = smooth_sig+lower
usable = False if (signal > smooth_sig_upper).any() or (signal < smooth_sig_lower).any() else True
if plot:
x_vals_setting = np.load('setting_x_values.npy')
plt.figure(figsize=figsize)
plt.title("Classified as: {}".format("Save" if usable else "Dangerous"))
plt.plot(x_vals_setting, smooth_sig, alpha=1., label="Smoothed wave")
plt.plot(x_vals_setting, signal, alpha=1., label="Original wave")
plt.plot(x_vals_setting, smooth_sig_upper, linestyle='--', alpha=0.5, label="Upper bound")
plt.plot(x_vals_setting, smooth_sig_lower, linestyle='--', alpha=0.5, label="Lower bound")
plt.grid(alpha=0.5)
plt.legend()
plt.ylabel("Normalized intensity intensity", size=12)
plt.xlabel("Wavelength [nm]", size=12)
plt.tight_layout()
if title != None:
plt.savefig(title, dpi=300)
plt.show()
if return_signal == False:
return usable
else:
return smooth_sig
# Inference of difference based models
def difference_model_inference(agent, current_spectrum, target_spectrum, current_setting_wave, current_setting_power):
x_spectrum = current_spectrum[:,0]
state = torch.cat([torch.tensor(current_spectrum[:,1]), torch.tensor(target_spectrum)]).float() / 900
predicted_action = agent(state.unsqueeze(0).to(device)).cpu().detach().numpy()[0]
# Postprocessing: x vals to setting x vals
setting_x_vals = np.load('setting_x_values.npy')
predicted_power_setting = predicted_action[0]
predicted_wave_setting = np.interp(setting_x_vals, x_spectrum, predicted_action[1:])
next_setting_wave = np.clip(current_setting_wave[:,1] + predicted_wave_setting,0,1)
next_setting_power = np.clip(current_setting_power + predicted_power_setting,0,1)
return next_setting_wave, next_setting_power
# Plot used for logging evaluation plots to W&B
def action_eval_plot(agent,num_plots, states, actions, log_writer = None, index = None, downsampling_rate = None, epoch=None):
setting_x = np.load('/home/bethke52/laser_data/setting_x_values.npy')
if downsampling_rate != None:
setting_x = signal.resample(setting_x,downsampling_rate)
for i in range(num_plots):
if index != None:
sample = index[i]
else:
sample = i
state = states[sample].float()
with torch.no_grad():
predicted_action = agent(state.unsqueeze(0).to(device))
fig, ax = plt.subplots(figsize=(10,6))
ax.plot(setting_x, actions[sample,1:].cpu().detach().numpy(),label='GT', alpha=0.5)
ax.plot(setting_x, predicted_action[0,1:].cpu().detach().numpy(), label='Predicted', alpha=0.5)
ax.set_ylim(-0.1,1.1)
ax.legend()
#ax[1].scatter(1,action[0].cpu().detach().numpy(), label='GT', alpha=0.5)
#ax[1].scatter(1,predicted_action[0,0].cpu().detach().numpy(), label='Predicted', alpha=0.5)
#x[1].set_ylim(0.01,0.04)
#x[1].legend()
#fig.tight_layout()
if index != None:
#plt.suptitle('Sample {}, Epoch {}'.format(index[i].item(), epoch))
plt.title('Sample {}, Epoch {}'.format(index[i].item(), epoch))
else:
#plt.suptitle('Sample {}, Epoch {}'.format(i, epoch))
plt.title('Sample {}, Epoch {}'.format(i, epoch))
if log_writer == None:
plt.show()
else:
#log_writer[1].log({"Output on sample {}".format(sample): log_writer[1].Image(plt), "Epoch": epoch})
log_writer[1].log({"Output on sample {}".format(sample): log_writer[1].plot.line_series(
xs=setting_x,
ys=[actions[sample,1:].cpu().detach().numpy(), predicted_action[0,1:].cpu().detach().numpy()],
keys=["GT", "Predicted"],
title='Sample {}, Epoch {}'.format(index[i].item(), epoch),
xname="wavelength"), "Epoch": epoch})
plt.close(fig)
plt.close(fig)
# Mazzler software hole functionality
def hole(wave, hole_depth, hole_width, hole_position, mazzler_fix=True):
omega = wave
#C = 100592.4376945696
k = hole_depth
delta_lambda_1 = hole_width
lambda_1 = hole_position
if mazzler_fix and lambda_1 < 800:
lambda_1 += 10
#omega_1 = (2* np.pi * C) / lambda_1
omega_1 = lambda_1
xi_1 = delta_lambda_1/(2*lambda_1)
delta_omega_1 = omega_1 * (xi_1 - xi_1**3)/2
return 1- k * np.exp(-((omega - omega_1)/delta_omega_1)**2)
# A function to smooth outliers and remove downward spikes
def move_to_zero(wave):
return norm(np.clip(wave-np.median(wave),0,1))
# Reverse engineered feedback loop
def re_loop(start, loop_set_name):
setting_loop= np.load('/home/bethke52/laser_data/live_data/setting_base_{}.npy'.format(loop_set_name))
spectrum_loop = np.load('/home/bethke52/laser_data/live_data/spectrum_{}.npy'.format(loop_set_name))
power_loop = np.load('/home/bethke52/laser_data/live_data/power_{}.npy'.format(loop_set_name))
spectrum_start = np.loadtxt('/home/bethke52/laser_data/{}'.format(start))
x = spectrum_start[:,0]
filter_= [+630.000000E+0,+7.329000E+0,+680.000000E+0,+7.329000E+0,+690.000000E+0,+7.353000E+0,+700.000000E+0,+7.377000E+0,+710.000000E+0,+7.399000E+0,+720.000000E+0,+7.418000E+0,+730.000000E+0,+7.436000E+0,+740.000000E+0,+7.460000E+0,+750.000000E+0,+7.486000E+0,+760.000000E+0,+7.510000E+0,+770.000000E+0,+7.541000E+0,+780.000000E+0,+7.572000E+0,+790.000000E+0,+7.603000E+0,+800.000000E+0,+7.639000E+0,+810.000000E+0,+7.676000E+0,+820.000000E+0,+7.749000E+0,+830.000000E+0,+7.790000E+0,+840.000000E+0,+7.833000E+0,+850.000000E+0,+7.877000E+0,+860.000000E+0,+7.922000E+0,+870.000000E+0,+7.968000E+0,+880.000000E+0,+8.015000E+0,+890.000000E+0,+8.060000E+0,+900.000000E+0,+8.109000E+0,+910.000000E+0,+8.158000E+0,+920.000000E+0,+8.201000E+0,+970.000000E+0,+8.201000E+0]
filter_interp = np.interp(x,filter_[::2],filter_[::-2])
re_init_setting = norm(uniform_filter1d((filter_interp*spectrum_start[:,1]**0.55),size=25), minmax_norm=False)
re_settings = []
re_settings.append(re_init_setting)
for i in range(spectrum_loop.shape[0]):
next_setting = norm((re_settings[i]+0.05*(2*norm(uniform_filter1d(spectrum_loop[i]-spectrum_start[:,1], size=15))-1)))
re_settings.append(next_setting)
for i in range(len(re_settings)-1):
plt.title("Step {} Power {}".format(i, power_loop[i]))
plt.plot(re_settings[i], label="Reverse")
plt.plot(setting_loop[i], label="GT")
plt.legend()
#plt.xlim(800,1080)
#plt.ylim(0.9,1.1)
plt.show()
print("#####################################################################")
# Loss that focusses on the power parameter in the action space
def power_loss(predicted_action, action):
return torch.nn.MSELoss()(predicted_action[:,0], action[:,0]) + torch.nn.MSELoss()(predicted_action[:,1:], action[:,1:])
# Modify signals with multiple dangerous holes
def multi_hole(signal, num_holes = 2):
x_vals = np.load('/home/bethke52/laser_data/setting_x_values.npy')
hole_wave = np.zeros(x_vals.shape[0])
signal_mod = signal.copy()
for i in range(num_holes):
range_idx = np.where(signal > 0.4)[0]
range_lower = x_vals[range_idx.min()]
range_upper = x_vals[range_idx.max()]
pos = np.random.uniform(range_lower, range_upper)
width = np.random.uniform(10,15)
depth = np.random.uniform(0.8,0.9)
depth_scale = 1.4 - signal[np.where(find_nearest(x_vals, pos) == x_vals)[0][0]].item()
depth = depth*depth_scale
signal_mod = norm(signal_mod * hole(x_vals, depth, width, pos,mazzler_fix=False))
return signal_mod
# Modify signals with sinus noise + minor gaussian noise
def high_freq_signals(sigs, fac = 0.05,freq_lim = 25, plot_noise = False, num_sin = 3):
num_sig = sigs.shape[0]
size = sigs.shape[1]
x = np.arange(size)[np.newaxis,...].repeat(num_sig,axis=0) / size
rand_sin = np.array([np.sin(2*np.pi*x*np.random.uniform(7,freq_lim,size=(num_sig,1))+np.random.uniform(0,2*np.pi)) for i in range(num_sin)])
noise = rand_sin.prod(axis=0) + np.random.normal(size=(num_sig,size))*np.random.uniform(0,0.05)
if plot_noise:
[plt.plot(i) for i in noise]
plt.show()
mod_sigs = sigs + noise * fac
return mod_sigs
# Add holes and sinus+gauss noise to signals
def add_danger_noise(actions):
hole_actions = []
for i in range(actions.shape[0]):
hole_action = multi_hole(actions[i], num_holes=np.random.randint(1,5))
hole_action = high_freq_signals(hole_action[np.newaxis,...],num_sin=np.random.randint(0,3))[0]
hole_actions.append(hole_action)
hole_actions = np.array(hole_actions)
return hole_actions
# Create bad examples for mazzler actions based on previous ones and random noise
def create_bad_examples(actions, size=2047, num_mod=1000, num_noise=1000):
actions_idx = np.random.randint(0,actions.shape[0],num_mod)
danger_actions = add_danger_noise(actions[actions_idx])
uniform_noise = np.array([np.random.uniform(np.random.uniform(-1,0),np.random.uniform(0,1),size=size) for i in range(num_noise//2)])
normal_noise = np.array([ np.random.normal(np.random.uniform(-0.5,0.5),np.random.uniform(0,1),size=size) for i in range(num_noise//2)])
return np.concatenate((danger_actions, uniform_noise, normal_noise))
# Get actions for piecewise linear spline
def get_pwl_actions(actions, base_waves=None):
x_vals_setting = np.load('/home/bethke52/laser_data/setting_x_values.npy')
x_vals_spectrum = np.load('/home/bethke52/laser_data/spectrum_x_values.npy')
if base_waves==None:
waves = actions[:,1:].cpu().detach().numpy()
else:
waves= base_waves.cpu().detach().numpy()
pos_thres = 0.01
waves_pos = np.array([(x_vals_setting[np.where(waves[i] > pos_thres)[0].min()], x_vals_setting[np.where(waves[i] > pos_thres)[0].max()]) for i in range(waves.shape[0])])
thres = 10
num_knots = 40
knots = np.linspace(waves_pos[:,0].min()-thres, waves_pos[:,1].max()+thres,num_knots)
mean_pos = np.mean((waves_pos[:,1].max(),waves_pos[:,0].min()))
edge = (mean_pos-waves_pos[:,0].min())
focus_knots = np.concatenate((
np.linspace(waves_pos[:,0].min()-thres, mean_pos-(edge/2),num_knots//4),
np.linspace(mean_pos-(edge/2),mean_pos+(edge/2),num_knots//2),
np.linspace(mean_pos+(edge/2), waves_pos[:,1].max()+thres,num_knots//4)))
knots = focus_knots
x_knots = np.array([find_nearest(x_vals_setting, i)for i in knots])
x_knots = np.concatenate((np.array([x_vals_setting[0]]), x_knots, np.array([x_vals_setting[-1]])))
xn = torch.tensor(x_vals_setting).float().to(device)
xp = torch.tensor(x_knots).float().to(device)
knots_idx = [np.where(i == x_vals_setting)[0][0] for i in x_knots]
pwl_actions = torch.cat((actions[:,:1], actions[:,1:][:,knots_idx]), dim=1)
return pwl_actions, xn, xp
# Get surrogate states for piecewise linear spline
def get_pwl_surrogate_states(surrogate_states, base_waves=None):
actions = surrogate_states[:,int(surrogate_states.shape[1]/2):]
pwl_actions, xn, xp = get_pwl_actions(actions, base_waves)
pwl_surrogate_states = torch.cat((surrogate_states[:,:int(surrogate_states.shape[1]/2)], pwl_actions), dim=1)
return pwl_surrogate_states, xn, xp
# A function to load live experience from source files, matching on integer in name extracted by splitting on '_' and [0]
def get_live_exp_data(base_path_settings, base_path_spectra, start_spectrum, smooth_states=False, kernel_size = 25, norm_states=False, norm_power=False, norm_power_max=0.05):
setting_list = np.array([file for file in listdir(base_path_settings) if'ipynb' not in file])
spectra_list = np.array([file for file in listdir(base_path_spectra) if 'start' not in file and 'ipynb' not in file] )
spectra_list = spectra_list[np.argsort([int(file.split('_')[0]) for file in spectra_list])][np.newaxis,...]
setting_list = setting_list[np.argsort([int(file.split('_')[0]) for file in setting_list])][np.newaxis,...]
spectrum_setting = np.concatenate((spectra_list.T, setting_list.T), axis=1)
setting_loop, power_loop, spectrum_loop = get_model_set(spectrum_setting, base_path_settings, base_path_spectra, '', save=False)
spectrum_start = np.loadtxt(base_path_spectra+start_spectrum)
# norm step
setting_loop= norm_np(setting_loop, axis=1)
states, actions = get_historic_states_actions(spectrum_start,spectrum_loop,power_loop,setting_loop)
if smooth_states:
states = torch.nn.AvgPool1d(kernel_size=kernel_size, stride=1, padding=kernel_size//2)(states)
if norm_states:
states = torch.cat([norm_tensor(states[:,:2048], dim=1),norm_tensor(states[:,2048:], dim=1)], dim=1)
if norm_power:
actions[:,0] = actions[:,0]/norm_power_max
return states, actions