-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompute_avg_scores.py
56 lines (44 loc) · 2.25 KB
/
compute_avg_scores.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import json
import os
import argparse
import numpy as np
def main():
''' set default hyperparams in default_hyperparams.py '''
parser = argparse.ArgumentParser()
# Required arguments
parser.add_argument('--dataset', default='eurlex')
config = parser.parse_args()
BASE_DIR = f'logs/{config.dataset}'
if os.path.exists(BASE_DIR):
print(f'{BASE_DIR} exists!')
score_dicts = {}
MODELS = ['bert-base-uncased', 'roberta-base', 'microsoft/deberta-base', 'nlpaueb/legal-bert-base-uncased',
'zlucia/custom-legalbert', 'allenai/longformer-base-4096', 'google/bigbird-roberta-base']
for model in MODELS:
score_dict = {'train': {'micro': [], 'macro': []},
'dev': {'micro': [], 'macro': []},
'test': {'micro': [], 'macro': []}}
for seed in range(1, 6):
seed = f'seed_{seed}'
try:
with open(os.path.join(BASE_DIR, model, seed, 'all_results.json')) as json_file:
json_data = json.load(json_file)
val = float(json_data['predict_micro-f1'])
score_dict['dev']['micro'].append(float(json_data['eval_micro-f1']))
score_dict['dev']['macro'].append(float(json_data['eval_macro-f1']))
score_dict['test']['micro'].append(float(json_data['predict_micro-f1']))
score_dict['test']['macro'].append(float(json_data['predict_macro-f1']))
except:
continue
score_dicts[model] = score_dict
print(f'{" " * 36} {"VALIDATION":<60} | {"TEST":<60}')
print('-' * 200)
for algo, stats in score_dicts.items():
report_line = f'{algo:>35}: MICRO-F1: {np.mean(stats["dev"]["micro"])*100:.1f} ± {np.std(stats["dev"]["micro"])*100:.1f}\t'
report_line += f'MACRO-F1: {np.mean(stats["dev"]["macro"])*100:.1f} ± {np.std(stats["dev"]["macro"])*100:.1f}\t'
report_line += ' | '
report_line += f'MICRO-F1: {np.mean(stats["test"]["micro"])*100:.1f} ± {np.std(stats["test"]["micro"])*100:.1f}\t'
report_line += f'MACRO-F1: {np.mean(stats["test"]["macro"])*100:.1f} ± {np.std(stats["test"]["macro"])*100:.1f}\t'
print(report_line)
if __name__ == '__main__':
main()