-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfuction.py
58 lines (46 loc) · 1.59 KB
/
fuction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import cv2 as cv
import numpy as np
n = 0.5
def imgprint(name, img):
cv.imshow(name, img)
def alfa_iluminacao(frame, previus):
"""
Calcula a parcela do alfa que varia de acordo a luminosidade
:param frame: Frame atual
:param previus: Frame anterios
:return: Parcela do alfa que varia de acordo com a luminosidade
"""
mean1 = np.mean(frame)
mean2 = np.mean(previus)
max_mean = max(mean1, mean2)
alfa = n * (1 - abs(mean1 - mean2) / max_mean)
return alfa
def morph_dilatation(img):
"""
A função tira o ruido e preenche o meio da a imagem
:param img: img
:return: Uma imagem
"""
# Rect Kernel
kernel = cv.getStructuringElement(cv.MORPH_RECT, (20, 20))
kernel_close = cv.getStructuringElement(cv.MORPH_RECT, (10, 10))
kernel_dilate = cv.getStructuringElement(cv.MORPH_RECT, (7, 7))
img = cv.morphologyEx(img, cv.MORPH_CLOSE, kernel_close)
img = cv.GaussianBlur(img, (9, 9), 0)
img = cv.morphologyEx(img, cv.MORPH_OPEN, kernel)
img = cv.dilate(img, kernel_dilate, iterations=1)
return img
def filtro_cinza(img):
linhas , colunas , tipo = img.shape
binary_mask = np.zeros((linhas, colunas))
intervalo = 17
for i in range(0, linhas):
for j in range(0, colunas):
valor = img[i, j, 0]
if valor - intervalo < img[i, j, 1] < valor + intervalo:
if valor - intervalo < img[i, j, 2] < valor + intervalo:
binary_mask[i, j] = 1
imgprint("bus", binary_mask)
return binary_mask
if __name__ == "__main__":
img = cv.imread("estrada.png")