-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlab2.2.py
149 lines (105 loc) · 3.5 KB
/
lab2.2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
"""Обратная интерполяция"""
from math import cos, sin, pi, fabs, ceil, log
from prettytable import PrettyTable
relative_accuracy = 0.001
left_fist = -5
right_first = 1
left_second = -3
right_second = 3
def f(x, y):
return x ** 3 - 15 * y + 4
def g(x, y):
return cos(x) - y
def bisection(a, b, x, eps, f):
if f(x, a) == eps:
return a
if f(x, b) == eps:
return b
c = (a + b) / 2
while abs(b - a) > eps * abs(c) + eps:
c = (a + b) / 2
if f(x, b) * f(x, c) < 0:
a = c
else:
b = c
return (a + b) / 2
def for_first_equation(x):
return bisection(left_fist, right_first, x, relative_accuracy, f)
def for_second_equation(x):
return bisection(left_fist, right_first, x, relative_accuracy, g)
def create_table(left, right, step, function):
x = []
y = []
while left <= right:
x.append(left)
y.append(function(left))
left += step
return [x, y]
def find_beg(x, table, size, near, deg):
deg += 1
if near == 0 and table[near] > x:
return 0
if near == size - 1 and table[near] < x:
return size - deg - 1
if x <= table[near]:
if near < deg / 2:
return 0
if (size - 1 - near) < (ceil(deg / 2) - 1):
return size - deg - 1
return near - deg / 2
if x > table[near]:
if near < (ceil(deg / 2) - 1):
return 0
if size - 1 - deg < deg / 2:
return size - 1 - deg
return near - (ceil(deg / 2) - 1)
return 0
def nearest_value(x, table, size):
if x < table[0]:
return 0
if x > table[size - 1]:
return size - 1\
diff = fabs(x - table[0])
first_y = 0
for i in range(1, size):
if fabs(x - table[i]) < diff:
first_y = i
diff = fabs(x - table[i])
return first_y
def newton_interpolation(x, degree, beginnig, table_x, table_y):
result = table_y[beginnig]
for i in range((beginnig + 1), beginnig + degree):
divided = 0
for j in range(beginnig, i + 1):
difference = 1
for k in range(beginnig, i + 1):
if (k != j):
difference *= (table_x[j] - table_x[k])
divided += (table_y[j] / difference)
for k in range(beginnig, i):
divided *= (x - table_x[k])
result += divided
return result
a = float(input('Введите левый предел: \n'))
b = float(input('ВВедите правый предел: \n'))
step = float(input("Вывдете шаг: \n"))
x_column_first, y_column_first = create_table(a, b, step, for_first_equation)
x_column_second, y_column_second = create_table(a, b, step, for_second_equation)
x_result, y_result = [], []
for index in range(len(y_column_first)):
y_result.append(x_column_first[index])
x_result.append(y_column_second[index] - y_column_first[index])
table_data = PrettyTable()
table_data.add_column('X', x_result)
table_data.add_column('Y(X)', y_result)
print(table_data)
degree = int(input('Enter degree of Newton\'s polynomial: \n'))
x = 0
for_first_y = nearest_value(x, x_result, len(x_result))
beginning = find_beg(x, x_result, len(x_result), for_first_y, degree)
result = newton_interpolation(x, degree, int(beginning), x_result, y_result)
print('\n -------- Results -------- \n')
print('X = ', result)
y_first = for_first_equation(result)
y_second = for_second_equation(result)
print('Y = ', y_first + (y_second - y_first) / 2)