-
Notifications
You must be signed in to change notification settings - Fork 648
/
Copy pathstatic_model.py
executable file
·95 lines (83 loc) · 3.77 KB
/
static_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from net import NCF_NeuMF_Layer, NCF_GMF_Layer, NCF_MLP_Layer
class StaticModel():
def __init__(self, config):
self.cost = None
self.config = config
self._init_hyper_parameters()
def _init_hyper_parameters(self):
self.num_users = self.config.get("hyper_parameters.num_users")
self.num_items = self.config.get("hyper_parameters.num_items")
self.mf_dim = self.config.get("hyper_parameters.mf_dim")
self.mode = self.config.get("hyper_parameters.mode")
self.layers = self.config.get("hyper_parameters.fc_layers")
self.learning_rate = self.config.get(
"hyper_parameters.optimizer.learning_rate")
def create_feeds(self, is_infer=False):
user_input = paddle.static.data(
name="user_input", shape=[-1, 1], dtype='int64')
item_input = paddle.static.data(
name="item_input", shape=[-1, 1], dtype='int64')
label = paddle.static.data(name="label", shape=[-1, 1], dtype='int64')
feeds_list = [user_input, item_input, label]
return feeds_list
def net(self, input, is_infer=False):
if self.mode == "NCF_NeuMF":
ncf_model = NCF_NeuMF_Layer(self.num_users, self.num_items,
self.mf_dim, self.layers)
if self.mode == "NCF_GMF":
ncf_model = NCF_GMF_Layer(self.num_users, self.num_items,
self.mf_dim, self.layers)
if self.mode == "NCF_MLP":
ncf_model = NCF_MLP_Layer(self.num_users, self.num_items,
self.mf_dim, self.layers)
prediction = ncf_model.forward(input)
predict_2d = paddle.concat(x=[1 - prediction, prediction], axis=1)
label_input = input[2]
auc, batch_auc, [batch_stat_pos, batch_stat_neg, stat_pos,
stat_neg] = paddle.static.auc(input=predict_2d,
label=label_input,
num_thresholds=2**12,
slide_steps=0)
self.inference_target_var = prediction
if is_infer:
fetch_dict = {
"user": input[0],
'prediction': prediction,
"label": input[2],
'auc': auc
}
return fetch_dict
cost = F.log_loss(
input=prediction, label=paddle.cast(
x=input[2], dtype='float32'))
avg_cost = paddle.mean(x=cost)
# print(avg_cost)
self._cost = avg_cost
fetch_dict = {'Loss': avg_cost, 'Auc': auc}
return fetch_dict
def create_optimizer(self, strategy=None):
optimizer = paddle.optimizer.Adam(
learning_rate=self.learning_rate, lazy_mode=True)
if strategy != None:
import paddle.distributed.fleet as fleet
optimizer = fleet.distributed_optimizer(optimizer, strategy)
optimizer.minimize(self._cost)
def infer_net(self, input):
return self.net(input, is_infer=True)