-
Notifications
You must be signed in to change notification settings - Fork 648
/
Copy pathnet.py
253 lines (229 loc) · 10.4 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
from paddle.nn import functional as F
from itertools import combinations
import numpy as np
import pdb
class FGCNN(nn.Layer):
def __init__(self, sparse_num_field, sparse_feature_size, feature_name,
feature_dim, dense_num_field, conv_kernel_width, conv_filters,
new_maps, pooling_width, stride, dnn_hidden_units,
dnn_dropout):
'''
Parameters
vocab_size -
'''
super(FGCNN, self).__init__()
self.sparse_num_field = sparse_num_field
self.dense_num_field = dense_num_field
self.sparse_feature_size = sparse_feature_size
self.feature_name = feature_name
self.feature_dim = feature_dim
self.feature_num_filed = self.sparse_num_field + self.dense_num_field
self.conv_filters = conv_filters
self.conv_kernel_width = conv_kernel_width
self.new_maps = new_maps
self.pooling_width = pooling_width
self.stride = stride
self.fg_embedding = nn.LayerList([
EmbeddingLayer(
num_embeddings=self.sparse_feature_size,
embedding_dim=self.feature_dim,
feature_name=self.feature_name[i] + '_fg_emd')
for i in range(self.feature_num_filed)
])
self.embedding = nn.LayerList([
EmbeddingLayer(
num_embeddings=self.sparse_feature_size,
embedding_dim=self.feature_dim,
feature_name=self.feature_name[i] + '_emd')
for i in range(self.feature_num_filed)
])
self.fgcnn = FGCNNLayer(self.feature_num_filed, self.feature_dim,
self.conv_filters, self.conv_kernel_width,
self.new_maps, self.pooling_width, self.stride)
self.combined_feture_num = self.fgcnn.new_feture_num + self.feature_num_filed
self.inner_product_layer = InnerProductLayer(self.combined_feture_num)
self.dnn_input_dim = self.combined_feture_num * (self.combined_feture_num - 1) // 2\
+ self.combined_feture_num * self.feature_dim
self.dnn = DNNLayer(self.dnn_input_dim, dnn_hidden_units, dnn_dropout)
self.fc_linear = self.add_sublayer(
name='fc_linear',
sublayer=nn.Linear(
in_features=dnn_hidden_units[-1], out_features=1))
def forward(self, inputs):
inputs = paddle.to_tensor(inputs)
fg_input_list = []
origin_input_list = []
for i in range(self.feature_num_filed):
fg_input_list.append(self.fg_embedding[i](inputs[:, i].astype(
'int64')).reshape((-1, 1, self.feature_dim)))
origin_input_list.append(self.embedding[i](inputs[:, i].astype(
'int64')).reshape((-1, 1, self.feature_dim)))
fg_input = paddle.concat(fg_input_list, axis=1)
origin_input = paddle.concat(origin_input_list, axis=1)
new_features = self.fgcnn(fg_input)
combined_input = paddle.concat([origin_input, new_features], axis=1)
inner_product = self.inner_product_layer(combined_input)
linear_signal = paddle.flatten(combined_input, start_axis=1)
dnn_input = paddle.concat([linear_signal, inner_product], axis=1)
dnn_output = self.dnn(dnn_input)
dnn_logit = self.fc_linear(dnn_output)
y_pred = F.sigmoid(dnn_logit)
return y_pred
class EmbeddingLayer(nn.Layer):
def __init__(self, num_embeddings, embedding_dim, feature_name):
super(EmbeddingLayer, self).__init__()
self.embedding = nn.Embedding(
num_embeddings=num_embeddings,
embedding_dim=embedding_dim,
name=feature_name,
sparse=True)
def forward(self, inputs):
return self.embedding(inputs)
class FGCNNLayer(nn.Layer):
def __init__(self, feature_num_field, embedding_size, filters,
kernel_width, new_maps, pooling_width, stride):
super(FGCNNLayer, self).__init__()
self.feature_num_field = feature_num_field
self.embedding_size = embedding_size
self.filters = filters
self.kernel_width = kernel_width
self.new_maps = new_maps
self.pooling_width = pooling_width
self.stride = stride
self.init()
# CNN network using tanh activation function and pooling layer
self.conv_pooling = nn.LayerList([
nn.Sequential(
nn.Conv2D(
in_channels=self.in_channels_size[i],
out_channels=self.filters[i],
kernel_size=(self.kernel_width[i], 1),
padding=(self.padding_size[i], 0),
stride=self.stride),
nn.BatchNorm2D(self.filters[i]),
nn.Tanh(),
nn.MaxPool2D(
kernel_size=(self.pooling_width[i], 1),
stride=(self.pooling_width[i], 1)), )
for i in range(len(self.filters))
])
# fully connected layer to combine all the local features
self.recombination = nn.LayerList([
nn.Sequential(
nn.Linear(
in_features=self.filters[i] * self.pooling_shape[i] *
self.embedding_size,
out_features=self.pooling_shape[i] * self.embedding_size *
self.new_maps[i],
name='fgcnn_linear_%d' % i),
nn.Tanh()) for i in range(len(self.filters))
])
def forward(self, inputs):
# inputs shape: [batch_size, feature_num_field, embedding_size]
feature = inputs.unsqueeze(1)
# feature shape: [batch_size, 1, feature_num_field, embedding_size]
new_feature_list = []
for i in range(0, len(self.filters)):
# use convolution layer to get new local feature
feature = self.conv_pooling[i](feature)
# use recombination layer to get new important features
result = self.recombination[i](paddle.flatten(
feature, start_axis=1))
new_feature_list.append(
paddle.reshape(
x=result,
shape=(-1, self.pooling_shape[i] * self.new_maps[i],
self.embedding_size)))
new_features = paddle.concat(new_feature_list, axis=1)
# new_features shape: [batch_size, new_feature_num, embedding_size]
return new_features
def init(self):
# compute pooling shape
self.pooling_shape = []
self.pooling_shape.append(self.feature_num_field //
self.pooling_width[0])
for i in range(1, len(self.filters)):
self.pooling_shape.append(self.pooling_shape[i - 1] //
self.pooling_width[i])
# compute padding size
self.padding_size = []
self.padding_size.append(
((self.feature_num_field - 1) * self.stride[0] +
self.kernel_width[0] - self.feature_num_field) // 2)
for i in range(1, len(self.filters)):
self.padding_size.append(
((self.pooling_shape[i - 1] - 1) * self.stride[0] +
self.kernel_width[i] - self.pooling_shape[i - 1]) // 2)
self.in_channels_size = [1, ] + list(self.filters)
self.new_feture_num = sum([
self.pooling_shape[i] * self.new_maps[i]
for i in range(len(self.filters))
])
class DNNLayer(nn.Layer):
def __init__(self, inputs_dim, hidden_units, dropout_rate):
super(DNNLayer, self).__init__()
self.dropout_rate = dropout_rate
self.dropout = nn.Dropout(dropout_rate)
hidden_units = [inputs_dim] + list(hidden_units)
self.linears = nn.LayerList([
nn.Sequential(
nn.Linear(
in_features=hidden_units[i],
out_features=hidden_units[i + 1],
weight_attr=nn.initializer.Normal(
mean=0, std=1e-4),
name='dnn_%d' % i),
nn.BatchNorm(hidden_units[i + 1])
# nn.ReLU(hidden_units[i + 1],name='relu_%d' % i)
) for i in range(len(hidden_units) - 1)
])
self.activation_layers = nn.LayerList([
nn.ReLU(name='relu_%d' % i) for i in range(len(hidden_units) - 1)
])
# @paddle.jit.to_static
def forward(self, inputs):
for i in range(len(self.linears)):
inputs = self.linears[i](inputs)
inputs = self.activation_layers[i](inputs)
inputs = self.dropout(inputs)
return inputs
class InnerProductLayer(nn.Layer):
""" output: product_sum_pooling (bs x 1),
Bi_interaction_pooling (bs * dim),
inner_product (bs x f2/2),
elementwise_product (bs x f2/2 x emb_dim)
"""
def __init__(self, num_fields=None):
super(InnerProductLayer, self).__init__()
if num_fields is None:
raise ValueError("num_fields is required")
else:
self.num_fields = num_fields
self.interaction_units = int(num_fields * (num_fields - 1) / 2)
def forward(self, feature_emb):
onemask = paddle.ones(
shape=[feature_emb.shape[0], self.num_fields, self.num_fields],
dtype='int32')
tri = paddle.triu(onemask, 1)
upper_triange_mask = paddle.cast(tri, 'bool')
inner_product_matrix = paddle.bmm(feature_emb,
paddle.transpose(
feature_emb, perm=[0, 2, 1]))
flat_upper_triange = paddle.masked_select(inner_product_matrix,
upper_triange_mask)
return flat_upper_triange.reshape([-1, self.interaction_units])