-
Notifications
You must be signed in to change notification settings - Fork 648
/
Copy pathdygraph_model.py
98 lines (87 loc) · 4.11 KB
/
dygraph_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import net
import numpy as np
class DygraphModel():
# define model
def create_model(self, config):
sparse_input_slot = config.get('hyper_parameters.sparse_inputs_slots')
dense_input_slot = config.get('hyper_parameters.dense_inputs_slots')
sparse_feature_size = config.get(
"hyper_parameters.sparse_feature_size")
feature_name = config.get("hyper_parameters.feature_name")
feature_dim = config.get("hyper_parameters.feature_dim", 20)
conv_kernel_width = config.get("hyper_parameters.conv_kernel_width",
(7, 7, 7, 7))
conv_filters = config.get("hyper_parameters.conv_filters",
(14, 16, 18, 20))
new_maps = config.get("hyper_parameters.new_maps", (3, 3, 3, 3))
pooling_width = config.get("hyper_parameters.pooling_width",
(2, 2, 2, 2))
stride = config.get("hyper_parameters.stride", (1, 1))
dnn_hidden_units = config.get("hyper_parameters.dnn_hidden_units",
(128, ))
dnn_dropout = config.get("hyper_parameters.dnn_dropout", 0.0)
fgcnn_model = net.FGCNN(
sparse_input_slot, sparse_feature_size, feature_name, feature_dim,
dense_input_slot, conv_kernel_width, conv_filters, new_maps,
pooling_width, stride, dnn_hidden_units, dnn_dropout)
return fgcnn_model
# define feeds which convert numpy of batch data to paddle.tensor
def create_feeds(self, batch_data, config):
inputs = paddle.to_tensor(np.array(batch_data[0]).astype('int64'))
inputs = batch_data[0]
label = batch_data[1]
return label, inputs
# define loss function by predicts and label
def create_loss(self, y_pred, label):
loss = nn.functional.log_loss(
y_pred, label=paddle.cast(
label, dtype="float32"))
avg_cost = paddle.mean(x=loss)
return avg_cost
# define optimizer
def create_optimizer(self, dy_model, config):
lr = config.get("hyper_parameters.optimizer.learning_rate", 1e-3)
optimizer = paddle.optimizer.Adam(
parameters=dy_model.parameters(), learning_rate=lr)
return optimizer
def create_metrics(self):
metrics_list_name = ["auc"]
auc_metric = paddle.metric.Auc("ROC")
metrics_list = [auc_metric]
return metrics_list, metrics_list_name
# construct train forward phase
def train_forward(self, dy_model, metrics_list, batch_data, config):
label, inputs = self.create_feeds(batch_data, config)
pred = dy_model.forward(inputs)
loss = self.create_loss(pred, label)
# update metrics
predict_2d = paddle.concat(x=[1 - pred, pred], axis=1)
metrics_list[0].update(preds=predict_2d.numpy(), labels=label.numpy())
# print_dict format :{'loss': loss}
print_dict = {'loss': loss}
return loss, metrics_list, print_dict
def infer_forward(self, dy_model, metrics_list, batch_data, config):
label, inputs = self.create_feeds(batch_data, config)
pred = dy_model.forward(inputs)
loss = self.create_loss(pred, label)
# update metrics
predict_2d = paddle.concat(x=[1 - pred, pred], axis=1)
metrics_list[0].update(preds=predict_2d.numpy(), labels=label.numpy())
# print_dict format :{'loss': loss}
print_dict = {'loss': loss}
return metrics_list, print_dict