-
Notifications
You must be signed in to change notification settings - Fork 648
/
Copy pathdygraph_model.py
114 lines (99 loc) · 4.42 KB
/
dygraph_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import math
import net
class DygraphModel():
# define model
def create_model(self, config):
user_size = config.get("hyper_parameters.user_size")
cms_segid_size = config.get("hyper_parameters.cms_segid_size")
cms_group_size = config.get("hyper_parameters.cms_group_size")
final_gender_size = config.get("hyper_parameters.final_gender_size")
age_level_size = config.get("hyper_parameters.age_level_size")
pvalue_level_size = config.get("hyper_parameters.pvalue_level_size")
shopping_level_size = config.get(
"hyper_parameters.shopping_level_size")
occupation_size = config.get("hyper_parameters.occupation_size")
new_user_class_level_size = config.get(
"hyper_parameters.new_user_class_level_size")
adgroup_size = config.get("hyper_parameters.adgroup_size")
cate_size = config.get("hyper_parameters.cate_size")
campaign_size = config.get("hyper_parameters.campaign_size")
customer_size = config.get("hyper_parameters.customer_size")
brand_size = config.get("hyper_parameters.brand_size")
pid_size = config.get("hyper_parameters.pid_size")
feat_embed_size = config.get("hyper_parameters.feat_embed_size")
dsin_model = net.DSIN_layer(
user_size,
adgroup_size,
pid_size,
cms_segid_size,
cms_group_size,
final_gender_size,
age_level_size,
pvalue_level_size,
shopping_level_size,
occupation_size,
new_user_class_level_size,
campaign_size,
customer_size,
cate_size,
brand_size,
sparse_embed_size=feat_embed_size,
l2_reg_embedding=1e-6)
return dsin_model
# define loss function by predicts and label
def create_loss(self, pred, label):
return paddle.nn.BCELoss()(pred, label)
# define feeds which convert numpy of batch data to paddle.tensor
def create_feeds(self, batch_data, config):
data, label = (batch_data[0], batch_data[1], batch_data[2],
batch_data[3]), batch_data[-1]
#data, label = batch_data[0], batch_data[1]
label = label.reshape([-1, 1])
return label, data
# define optimizer
def create_optimizer(self, dy_model, config):
lr = config.get("hyper_parameters.optimizer.learning_rate", 0.001)
optimizer = paddle.optimizer.Adam(
learning_rate=lr, parameters=dy_model.parameters())
return optimizer
# define metrics such as auc/acc
# multi-task need to define multi metric
def create_metrics(self):
metrics_list_name = ["auc"]
auc_metric = paddle.metric.Auc("ROC")
metrics_list = [auc_metric]
return metrics_list, metrics_list_name
# construct train forward phase
def train_forward(self, dy_model, metrics_list, batch_data, config):
label, input_tensor = self.create_feeds(batch_data, config)
pred = dy_model.forward(input_tensor)
# update metrics
predict_2d = paddle.concat(x=[1 - pred, pred], axis=1)
metrics_list[0].update(preds=predict_2d.numpy(), labels=label.numpy())
loss = self.create_loss(pred, paddle.cast(label, "float32"))
print_dict = {'loss': loss}
# print_dict = None
return loss, metrics_list, print_dict
def infer_forward(self, dy_model, metrics_list, batch_data, config):
label, input_tensor = self.create_feeds(batch_data, config)
pred = dy_model.forward(input_tensor)
# update metrics
predict_2d = paddle.concat(x=[1 - pred, pred], axis=1)
metrics_list[0].update(preds=predict_2d.numpy(), labels=label.numpy())
return metrics_list, None