diff --git a/python/paddle/tensor/linalg.py b/python/paddle/tensor/linalg.py index de3296efb7d6f..8f3a71e97510f 100644 --- a/python/paddle/tensor/linalg.py +++ b/python/paddle/tensor/linalg.py @@ -2930,7 +2930,7 @@ def svd( Let :math:`X` be the input matrix or a batch of input matrices, the output should satisfies: .. math:: - X = U * diag(S) * VT + X = U * diag(S) * V^{H} Args: x (Tensor): The input tensor. Its shape should be `[..., N, M]`, @@ -3010,7 +3010,7 @@ def svdvals(x: Tensor, name: str | None = None) -> Tensor: produced by singular value decomposition: .. math:: - X = U * diag(S) * VH + X = U * diag(S) * V^{H} Args: x (Tensor): The input tensor. Its shape should be `[..., M, N]`, where @@ -3091,12 +3091,12 @@ def svd_lowrank( If :math:`X` is the input matrix or a batch of input matrices, the output should satisfies: .. math:: - X \approx U * diag(S) * V^{T} + X \approx U * diag(S) * V^{H} When :math:`M` is given, the output should satisfies: .. math:: - X - M \approx U * diag(S) * V^{T} + X - M \approx U * diag(S) * V^{H} Args: x (Tensor): The input tensor. Its shape should be `[..., N, M]`, where `...` is