-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathESCvae_full.py
280 lines (237 loc) · 10 KB
/
ESCvae_full.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
from keras.layers import Lambda, Input, Dense
from keras.models import Model
from keras.datasets import mnist
from keras.losses import mse, binary_crossentropy
from keras.utils import plot_model
from keras import backend as K
from tensorflow.python.keras.callbacks import TensorBoard
from tensorflow.keras.callbacks import LearningRateScheduler,EarlyStopping
from time import time
import numpy as np
import matplotlib.pyplot as plt
import os
from config import *
import random
import keras.optimizers
import librosa
import librosa.display
import pandas as pd
import warnings
import tensorflow as tf
# Your data source for wav files
dataSourceBase = '/home/paul/Downloads/ava_vidprep_supportingModels/ESC-50-aug/'
#dataSourceBase = '/home/paul/Downloads/ava_vidprep_supportingModels/ESC-50-clone/'
#dataSourceBase = '/home/paul/Downloads/ESC-50-tst2/'
# Total wav records for training the model, will be updated by the program
totalRecordCount = 0
# Total classification class for your model (e.g. if you plan to classify 10 different sounds, then the value is 10)
totalLabel = 50
# model parameters for training
batchSize = 128
epochs = 60#0
filepath = "ESCvae-finemodel-{epoch:02d}-{loss:.2f}.hdf5"
checkpoint = keras.callbacks.ModelCheckpoint(filepath, monitor='val_loss', verbose=0, save_best_only=False, save_weights_only=False, mode='auto', period=1)
def sampling(args):
"""Reparameterization trick by sampling fr an isotropic unit Gaussian.
# Arguments:
args (tensor): mean and log of variance of Q(z|X)
# Returns:
z (tensor): sampled latent vector
"""
z_mean, z_log_var = args
print('z_mean shape is ',z_mean.shape, z_log_var.shape)
batch = K.shape(z_mean)[0]
dim = K.int_shape(z_mean)[1] # Returns the shape of tensor or variable as a tuple of int or None entries.
# by default, random_normal has mean=0 and std=1.0
epsilon = K.random_normal(shape=(batch, dim))
#return z_mean*z_mean+ K.exp(0.5 * z_log_var) * epsilon
#return K.exp(0.5 * z_log_var) * epsilon
return z_mean + K.exp(0.5 * z_log_var) * epsilon
# VAE model = encoder + decoder
# build encoder model
def encoder_model(inputs):
print('starting encoder model -inputs shape is ', inputs.shape)
x = Dense(intermediate_dim, activation='relu')(inputs)
z_mean = Dense(latent_dim, name='z_mean')(x)
z_log_var = Dense(latent_dim, name='z_log_var')(x)
# use reparameterization trick to push the sampling out as input
# note that "output_shape" isn't necessary with the TensorFlow backend
z = Lambda(sampling, output_shape=(latent_dim,), name='z')([z_mean, z_log_var])
encoder = Model(inputs, [z_mean, z_log_var, z], name='encoder')
return encoder, z_mean, z_log_var
# build decoder model
def decoder_model():
latent_inputs = Input(shape=(latent_dim,), name='z_sampling')
x = Dense(intermediate_dim, activation='relu')(latent_inputs)
outputs = Dense(original_dim, activation='sigmoid')(x)
# instantiate decoder model
decoder = Model(latent_inputs, outputs, name='decoder')
return decoder
def plot_results(*args,
batch_size=128,
model_name="vae_mnist"):
"""Plots labels and MNIST digits as function of 2-dim latent vector
# Arguments:
models (tuple): encoder and decoder models
data (tuple): test data and label
batch_size (int): prediction batch size
model_name (string): which model is using this function
"""
encoder, decoder, x_test, y_test = args
os.makedirs(model_name, exist_ok=True)
filename = os.path.join(model_name, "vae_mean.png")
# display a 2D plot of the digit classes in the latent space
z_mean, _, _ = encoder.predict(x_test,
batch_size=batch_size)
plt.figure(figsize=(12, 10))
plt.scatter(z_mean[:, 0], z_mean[:, 1], c=y_test)
plt.colorbar()
plt.xlabel("Dimension 1")
plt.ylabel("Dimension 2")
plt.savefig(filename)
filename = os.path.join(model_name, "digits_over_latent.png")
# display a 30x30 2D manifold of digits
n = 30
digit_size = 128
figure = np.zeros((digit_size * n, digit_size * n))
# linearly spaced coordinates corresponding to the 2D plot
# of digit classes in the latent space
grid_x = np.linspace(-4, 4, n)
grid_y = np.linspace(-4, 4, n)[::-1]
for i, yi in enumerate(grid_y):
for j, xi in enumerate(grid_x):
z_sample = np.array([[xi, yi]])
x_decoded = decoder.predict(z_sample)
digit = x_decoded[0].reshape(digit_size, digit_size)
figure[i * digit_size: (i + 1) * digit_size,
j * digit_size: (j + 1) * digit_size] = digit
plt.figure(figsize=(10, 10))
start_range = digit_size // 2
end_range = n * digit_size + start_range + 1
pixel_range = np.arange(start_range, end_range, digit_size)
sample_range_x = np.round(grid_x, 1)
sample_range_y = np.round(grid_y, 1)
plt.xticks(pixel_range, sample_range_x)
plt.yticks(pixel_range, sample_range_y)
plt.xlabel("z[0]")
plt.ylabel("z[1]")
plt.imshow(figure, cmap='Greys_r')
plt.savefig(filename)
def plot_label_clusters(vae, data, labels, f):
# display a 2D plot of the digit classes in the latent space
numrows = x_train.shape[0]
for i in range(0,int((numrows/viewBatch))):#print(x_train.shape)
sample = x_train[i*viewBatch:i*viewBatch+viewBatch,]
z_mean8, _, _ = vae.encoder.predict([[sample, sample]])
if (i==0):
z_mean=z_mean8
else:
z_mean = np.concatenate((z_mean,z_mean8), axis=0)
print(z_mean.shape)
#z_mean8, _, _ = vae.encoder.predict([[data, data]])
###################################################
#pca = PCA(n_components=2)
#z_mean = pca.fit_transform(z_mean8)
####################################################
time_start = time.time()
tsne = TSNE(n_components=2, verbose=1, perplexity=40, n_iter=2000)
z_mean = tsne.fit_transform(z_mean)
print('t-SNE done! Time elapsed: {} seconds'.format(time.time()-time_start))
plt.figure(figsize=(12, 10))
plt.scatter(z_mean[:, 0], z_mean[:, 1], c=labels)
plt.colorbar()
plt.xlabel("z[0]")
plt.ylabel("z[1]")
#plt.show()
plt.savefig(f +".png")
# This function will import wav files by given data source path.
# And will extract wav file features using librosa.feature.melspectrogram.
# Class label will be extracted from the file name
# File name pattern: {WavFileName}-{ClassLabel}
# e.g. 0001-0 (0001 is the name for the wav and 0 is the class label)
# The program only interested in the class label and doesn't care the wav file name
def importData():
dataSet = []
lblmap ={}
lblid=0
totalCount = 0
progressThreashold = 100
dirlist = os.listdir(dataSourceBase)
for dr in dirlist:
dataSource = os.path.join(dataSourceBase,dr)
for root, _, files in os.walk(dataSource):
for file in files:
fileName, fileExtension = os.path.splitext(file)
if fileExtension != '.wav': continue
if totalCount % progressThreashold == 0:
print('Importing data count:{}'.format(totalCount))
wavFilePath = os.path.join(root, file)
y, sr = librosa.load(wavFilePath, duration=2.97)
ps = librosa.feature.melspectrogram(y=y, sr=sr)
if ps.shape != (128, 128): continue
# extract the class label from the FileName
label0 = dr.split('-')[1]
if label0 not in lblmap:
lblmap[label0] =lblid
lblid+=1
label=lblmap[label0]
#label = dr#fileName.split('-')[1]
print(fileName, label0, label)
dataSet.append( (ps, label) )
totalCount += 1
f = open('dict50.csv','w')
f.write("classID,class")
for lb in lblmap:
f.write(str(lblmap[lb])+','+lb)
f.close()
global totalRecordCount
totalRecordCount = totalCount
print('TotalCount: {}'.format(totalRecordCount))
trainDataEndIndex = int(totalRecordCount*0.7)
random.shuffle(dataSet)
train = dataSet[:trainDataEndIndex]
test = dataSet[trainDataEndIndex:]
print('Total training data:{}'.format(len(train)))
print('Total test data:{}'.format(len(test)))
# Get the data (128, 128) and label from tuple
print("train 0 shape is ",train[0][0].shape)
X_train, y_train = zip(*train)
X_test, y_test = zip(*test)
return (X_train, y_train), (X_test, y_test)#dataSet
if __name__ == '__main__':
tensorboard = TensorBoard(log_dir = "logs/{}".format(time()))
(x_train, y_train), (x_test, y_test) = importData()
image_size = x_train[0].shape
original_dim = image_size[0] * image_size[1]
x_train = np.reshape(x_train, [-1, original_dim])
x_test = np.reshape(x_test, [-1, original_dim])
x_train = x_train.astype('float32') / 255
x_test = x_test.astype('float32') / 255
early_stopping_monitor = EarlyStopping(
monitor='val_loss',
min_delta=0,
patience=10,
verbose=0,
mode='auto',
baseline=None,
restore_best_weights=True)
input_shape = (original_dim, )
inputs = Input(shape=input_shape, name='encoder_input')
encoder, z_mean, z_log_var = encoder_model(inputs)
decoder = decoder_model()
# instantiate VAE model
outputs = decoder(encoder(inputs)[2])
vae = Model(inputs, outputs, name='vae_mlp')
reconstruction_loss = mse(inputs, outputs)
# reconstruction_loss = binary_crossentropy(inputs, outputs)
reconstruction_loss *= original_dim
kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
kl_loss = K.sum(kl_loss, axis=-1)
kl_loss *= -0.5
vae_loss = K.mean(reconstruction_loss + kl_loss)
vae.add_loss(vae_loss)
vae.compile(optimizer='adam')
print(vae.summary())
vae.fit(x_train, epochs=epochs, batch_size=batch_size, validation_data=(x_test, None), callbacks=[checkpoint])
vae.save_weights('vae_mlp_mnist_latent_dim_%s.h5' %latent_dim)
vae.save('vae_full_model_latent_dim_%s.h5' %latent_dim)