-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathscript_train_ganroute.py
197 lines (170 loc) · 8.02 KB
/
script_train_ganroute.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
import json
import os
import argparse
from time import time
from typing import List, Dict, Any
from functools import reduce
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from data.DIT import load_data
from net.GanRoute import ImageAutoEncoder, Discriminator
from utils.output import printout
from log.store_cong import store_cong_from_grid_ganroute
import warnings
warnings.filterwarnings("ignore")
logs: List[Dict[str, Any]] = []
argparser = argparse.ArgumentParser("Training")
argparser.add_argument('--name', type=str, default='GanRoute')
argparser.add_argument('--test', type=str, default='superblue19')
argparser.add_argument('--epochs', type=int, default=100)
argparser.add_argument('--train_batch', type=int, default=5)
argparser.add_argument('--batch', type=int, default=128)
argparser.add_argument('--lr', type=float, default=2e-4)
argparser.add_argument('--lr_decay', type=float, default=1e-2)
argparser.add_argument('--gan_lambda', type=float, default=0)
argparser.add_argument('--l1_lambda', type=float, default=10)
argparser.add_argument('--seed', type=int, default=0)
argparser.add_argument('--device', type=str, default='cuda:0')
argparser.add_argument('--hashcode', type=str, default='100000')
argparser.add_argument('--idx', type=int, default=8)
argparser.add_argument('--train_epoch', type=int, default=5)
argparser.add_argument('--itermax', type=int, default=2500)
argparser.add_argument('--scalefac', type=float, default=7.0)
argparser.add_argument('--outtype', type=str, default='sig')
argparser.add_argument('--binx', type=int, default=32)
argparser.add_argument('--biny', type=int, default=40)
argparser.add_argument('--graph_scale', type=int, default=10000)
args = argparser.parse_args()
seed = args.seed
np.random.seed(seed)
torch.manual_seed(seed)
device = torch.device(args.device)
if not args.device == 'cpu':
torch.cuda.set_device(device)
torch.cuda.manual_seed(seed)
_, train_output_images = load_data('data/train_images')
_, test_output_images = load_data('data/test_images')
n_train_sample = len(train_output_images)
n_test_sample = len(test_output_images)
train_loader = DataLoader(train_output_images, batch_size=args.batch, shuffle=True)
test_loader = DataLoader(test_output_images, batch_size=args.batch)
print('##### MODEL #####')
print('Generator:')
generator = ImageAutoEncoder().to(device)
n_param = 0
for name, param in generator.named_parameters():
print(f'\t{name}: {param.shape}')
n_param += reduce(lambda x, y: x * y, param.shape)
print(f'# of parameters: {n_param}')
print('Discriminator:')
discriminator = Discriminator().to(device)
n_param = 0
for name, param in discriminator.named_parameters():
print(f'\t{name}: {param.shape}')
n_param += reduce(lambda x, y: x * y, param.shape)
print(f'# of parameters: {n_param}')
loss_f = nn.BCELoss()
optimizer_gen = torch.optim.Adam(generator.parameters(), lr=args.lr, betas=(0.5, 0.999), weight_decay=5e-4)
optimizer_dis = torch.optim.Adam(discriminator.parameters(), lr=args.lr, betas=(0.5, 0.999), weight_decay=5e-4)
lr_scheduler_gen = torch.optim.lr_scheduler.StepLR(optimizer_gen, step_size=1, gamma=(1 - args.lr_decay))
real_label = 1.
fake_label = 0.
LOG_DIR = f'log/{args.test}'
if not os.path.isdir(LOG_DIR):
os.mkdir(LOG_DIR)
FIG_DIR = 'log/temp'
if not os.path.isdir(FIG_DIR):
os.mkdir(FIG_DIR)
for epoch in range(0, args.epochs + 1):
print(f'##### EPOCH {epoch} #####')
print(f"\tLearning rate of generator: {optimizer_gen.state_dict()['param_groups'][0]['lr']}")
logs.append({'epoch': epoch})
def train(data_loader: DataLoader):
for i, (batch_output_image, _) in enumerate(data_loader):
batch_output_image = batch_output_image.to(device)
batch_input_image = batch_output_image.clone()
batch_input_image[:, 0, :, :] = 0
############################
# (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
###########################
# Train with all-real batch
# discriminator.train()
# generator.eval()
discriminator.zero_grad()
# optimizer_dis.zero_grad()
b_size = batch_output_image.shape[0]
label = torch.full((b_size,), real_label, dtype=torch.float, device=device)
pred = discriminator(batch_output_image).view(-1)
err_dis_real = loss_f(pred, label)
err_dis_real.backward()
dis_x = pred.mean().item()
# Train with all-fake batch
batch_pred_image = generator(batch_input_image)
label.fill_(fake_label)
pred = discriminator(batch_pred_image.detach()).view(-1)
err_dis_fake = loss_f(pred, label)
err_dis_fake.backward()
dis_gen_z1 = pred.mean().item()
err_dis = err_dis_real + err_dis_fake
optimizer_dis.step()
############################
# (2) Update G network: maximize log(D(G(z)))
###########################
# discriminator.eval()
# generator.train()
generator.zero_grad()
# optimizer_gen.zero_grad()
label.fill_(real_label)
output = discriminator(batch_pred_image).view(-1)
err_gen_1 = loss_f(output, label)
err_gen_2 = F.l1_loss(batch_pred_image, batch_output_image)
err_gen = err_gen_1 * args.gan_lambda + err_gen_2 * args.l1_lambda
err_gen.backward()
dis_gen_z2 = output.mean().item()
optimizer_gen.step()
if i % 1 == 0:
print('\t[%d/%d][%d/%d][%d/%d]\tLoss_D: %.4f\tLoss_G: %.4f / %.4f\tD(x): %.4f\tD(G(z)): %.4f / %.4f'
% (epoch, args.epochs, epoch_i, args.train_batch, i, len(data_loader),
err_dis.item(), err_gen_1.item(), err_gen_2.item(), dis_x, dis_gen_z1, dis_gen_z2))
def evaluate(data_loader: DataLoader, set_name, n_sample, single_net=False):
print(f'\tEvaluate {set_name}:')
output_data = np.zeros((n_sample * 32 * 32, 3))
p = 0
with torch.no_grad():
for i, (batch_output_image, _) in enumerate(data_loader):
batch_output_image = batch_output_image.to(device)
batch_input_image = batch_output_image.clone()
batch_input_image[:, 0, :, :] = 0
batch_pred_image = generator(batch_input_image)
output_labels = batch_output_image[:, 0, ::2, ::2]
output_predictions = batch_pred_image[:, 0, ::2, ::2]
output_grid_mask = batch_output_image[:, 0, ::2, 1::2]
tgt = output_labels.cpu().data.numpy().flatten()
prd = output_predictions.cpu().data.numpy().flatten()
mask = output_grid_mask.cpu().data.numpy().flatten()
ln = len(tgt)
output_data[p:p + ln, 0], output_data[p:p + ln, 1], output_data[p:p + ln, 2] = tgt, prd, mask
p += ln
output_data = output_data[:p, :]
printout(output_data[:, 0], output_data[:, 1], "\t\tGRID_NO_INDEX: ", f'{set_name}grid_no_index_')
printout(output_data[output_data[:, 2] > 0, 0], output_data[output_data[:, 2] > 0, 1],
"\t\tGRID_INDEX: ", f'{set_name}grid_index_')
if set_name == 'test_' and args.test == 'superblue19':
store_cong_from_grid_ganroute(output_data[:, 0], output_data[:, 1], 32, 32, [160, 288],
f'{args.name}-{set_name}', epoch=epoch, fig_dir=FIG_DIR)
t0 = time()
if epoch:
for epoch_i in range(args.train_batch):
train(train_loader)
lr_scheduler_gen.step()
logs[-1].update({'train_time': time() - t0})
t2 = time()
evaluate(train_loader, 'train_', n_train_sample)
evaluate(test_loader, 'test_', n_test_sample, single_net=True)
print("\tinference time", time() - t2)
logs[-1].update({'eval_time': time() - t2})
with open(f'{LOG_DIR}/{args.name}.json', 'w+') as fp:
json.dump(logs, fp)