-
Notifications
You must be signed in to change notification settings - Fork 0
/
README.Rmd
77 lines (49 loc) · 3.28 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
---
output: github_document
---
<!-- README.md is generated from README.Rmd. Please edit that file -->
```{r, include = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.path = "man/figures/README-",
out.width = "100%"
)
```
# PenFFR
<!-- badges: start -->
The goal of PenFFR is to design a penalized funtion-on-funtion linear regression with multiples functional and scalar covariates. This package allows you to build two types of functional linear models:
- The concurrent linear model whose equation is given by : $$\mathrm{y}_i(t) = \beta_0(t) + \sum_{\ell=1}^p\beta_\ell(t)\mathrm{x}_i^\ell(t) + \varepsilon_i(t)$$
- The integral linear model given by : $$\mathrm{y}_i(t) = \beta_0(t) + \sum_{\ell=1}^p\int_0^t\beta_\ell(s,t)\mathrm{x}_i^\ell(s)\,ds + \varepsilon_i(t)$$
Parameters are estimated using a spline-based expansion with a number of basis functions that you can set.
To handle heterogeneous data, we also provide a Mixture-of-Experts (MoE) version of the linear concurrent model. The conditional density of $\mathrm{Y}(t)$ according to the function-on-function MoE (FFMoE) model is
$$\begin{eqnarray}
f(\mathrm{Y}(t)|\mathrm{X}(t),\Psi(t)) &=& \sum_{k=1}^\mathrm{K}\pi_k(\mathrm{X}(t),\alpha_k(t)) \Phi(\mathrm{Y}(t);\mathrm{X}(t)\beta_k(t),\sigma^2_k),\label{ME2}
\end{eqnarray}$$
with
$$\begin{itemize}
\item $\pi_k(\mathrm{X}(t),\ \alpha_k(t))$ the mixture proportion of group $k$, also called the $k^{\text{th}}$ gated network function, depending on the covariate $\mathrm{X}(t)$ through group specific functional parameter $\alpha_k(t)$. More details will be provided in the next section;
\item $\Psi_k(t) = (\beta_k(t),\alpha_k(t))$ are the functional parameters;
\item $\Phi(\mathrm{Y}(t); \mathrm{X}_i(t)\beta_k(t), \sigma^2_k)$ is the Gaussian density probability function of mean $\mathrm{X}(t)\beta_k(t)$ and variance $\sigma^2_k$.
\end{itemize}$$
## Download
You can download the package
* [Version 0.0.1](https://gitlab.tech.orange/rlsoftwarenet/penffr/-/archive/main/penffr-main.zip)
Or clone from Gitlab :
```
$ git clone https://gitlab.tech.orange/rlsoftwarenet/penffr.git
```
## Cite
If you use this software, please cite the following work :
* Jean Steve Tamo Tchomgui, Julien Jacques, Guillaume Fraysse, Vincent Barriac, Stéphane Chrétien. A mixture of experts regression model for functional response with functional covariates. Statistics and Computing, 2024, 34 (154), [s11222-024-10455-z](https://link.springer.com/article/10.1007/s11222-024-10455-z).
* Jean Steve Tamo Tchomgui, Julien Jacques, Vincent Barriac, Guillaume Fraysse, Stéphane Chrétien. A Penalized Spline Estimator for Functional Linear Regression with Functional Response. 2024. [hal-04120709v3](https://hal.science/hal-04120709v3).
For any questions, Please contact Jean Steve Tamo Tchomgui at jeanstevetamo at yahoo.fr or Guillaume Fraysse at guillaume dot fraysse at orange.com.
## License
Copyright (c) 2021 — 2024 Orange
This code is released under the `GPL-2.0-or-later` license. See the `LICENSE.md` file for more information.
## Contact
* Homepage: [opensource.orange.com](http://opensource.orange.com/)
* e-mail: guillaume dot fraysse at orange.com
## Link documents
- [Contributors list](CONTRIBUTORS.md)
<!-- badges: end -->