-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathomstd20html-diff.xml
8785 lines (7449 loc) · 536 KB
/
omstd20html-diff.xml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<?xml version="1.0" encoding="iso-8859-1"?>
<?xml-stylesheet type="text/xsl" href="pmathml.xsl"?>
<html xmlns="http://www.w3.org/1999/xhtml" xmlns:m="http://www.w3.org/1998/Math/MathML" xml:space="preserve">
<head>
<title>The OpenMath Standard</title>
<style>
body {
margin-left: 1em;
margin-right: 1em;
}
div.mdata {
margin-top: .5em;
margin-bottom: .5em;
margin-left: 5em;
}
span.mdatahead {
font-weight: bold;
}
div.minitoc {
border-width: thin;
border-style: solid;
border-color: blue;
font-size: 90%;
margin-top: 1em;
margin-bottom: 1em;
padding: 1em 1em 1em 1em;
}
p {text-align:justify;
}
code {font-size: 125%;
font-family: monospace;
}
.figure {
border-width:thin;
border-style: solid;
border-color: black;
margin: 0.5em 0.5em 0.5em 0.5em;
padding: 0.5em 0.5em 0.5em 0.5em;
}
div.caption {
margin-top: 1em;
}
.footnote{
font-size: 75%;
font-style: italic;
}
.delliteral {
font-size: 75%;
background-color: #efefef;
border-color: black;
border-style: solid;
border-width: 1px;
padding: 1em;
color: red;
text-decoration: line-through;
}
.newliteral {
font-size: 75%;
background-color: #efefef;
border-color: black;
border-style: solid;
border-width: 1px;
padding: 1em;
color: green;
}
.literal {
font-size: 75%;
background-color: #efefef;
border-color: black;
border-style: solid;
border-width: 1px;
padding: 1em;
margin:bottom: 1em;
}
.del {
color: red;
text-decoration: line-through;
}
.new {
color: green;
}
.chg {
color: blue;
}
.changetoc {
border-style: solid;
border-color: black;
border-width: 1px;
margin: 2em 2em 2em 2em;
background-color: yellow;
}
.lowerroman {
list-style-type: lower-roman;
}
</style>
</head>
<body>
<h1>The <i>OpenMath</i> Standard</h1>
<div>
<div class="mdata">
<img src="keylogo.png" alt="OM logo"/>
</div>
<div class="mdata">
Version: 2.0
</div>
<div class="mdata">
The OpenMath Society
</div>
<div class="mdata"><span class="mdatahead">Editors</span><br/>
S. Buswell, O. Caprotti, D. P. Carlisle, M. C. Dewar, M. Gaëtano and M. Kohlhase
</div>
<div class="mdata">
June 2004
</div>
<div class="mdata">© 2000–2004 The OpenMath Society</div>
</div>
<div>
<h3>Abstract</h3>
<p class="del">This document proposes <i>OpenMath</i> as a standard for the communication of
semantically rich mathematical objects. This draft of the <i>OpenMath</i>
standard comprises the following: a description of <i>OpenMath</i> objects, the
grammar of <acronym>XML</acronym> and of the binary encoding of objects, a
description of Content Dictionaries and an <acronym>XML</acronym> document type
definition for validating Content Dictionaries. The non-normative
<a href="#cha_his">Chapter </a> of this document briefly overviews the history
of <i>OpenMath</i>.</p><p class="new">This document describes version 2 of
<i>OpenMath</i>: a standard for
the representation and communication of mathematical objects.
<span class="finaledit">This version clarifies and extends <i>OpenMath</i> 1.1 <a href="#OM_1.1">[9]</a>.</span>
<i>OpenMath</i>
allows the <i>meaning</i> of an object to be encoded
rather than just a visual representation. It is designed to allow the
free exchange of mathematical objects between software systems and human
beings. On the worldwide web it is designed to allow mathematical
expressions embedded in web pages to be manipulated and computed with in
a meaningful and correct way. It is designed to be machine-generatable
and machine-readable, rather than written by hand.
</p><p class="new">The <i>OpenMath</i> Standard is the official reference for
the <i>OpenMath</i> language and has been approved by the <i>OpenMath</i> Society. It is not
intended as an introductory document or a user's guide, for the latest
available material of this nature please consult the <i>OpenMath</i> web-site at
<a href="http://www.openmath.org">http://www.openmath.org</a>.</p><p class="new">This document includes an overview of the
<i>OpenMath</i> architecture, an abstract description of <i>OpenMath</i> objects and two
mechanisms for producing concrete encodings of such objects. The first,
in <acronym>XML</acronym>, is designed primarily for use on the web, in documents, and
for applications which want to mix <i>OpenMath</i> as a content representation with
MathML as a presentation format. The second, a binary format, is
designed for applications which wish to exchange very large objects, or
a lot of data as efficiently as possible. This document also includes a
description of Content Dictionaries - the mechanism by which the meaning
of a symbol in the <i>OpenMath</i> language is encoded, as well as an XML encoding
for them. Finally it includes guidelines for the development of
<i>OpenMath</i>-compliant applications. <span class="finaledit">Further background
on <i>OpenMath</i> and guidelines for its use in applications may be found in the
accompanying Primer <a href="#OM_primer">[10]</a>.</span></p>
</div>
<div class="changetoc">
<h3>Change-marked edition notes</h3>
<p>
This edition contains colour coded change markings
relative to the OpenMath 1.0 document...</p>
<ul>
<li class="new">New text is marked with css class "new" (green).</li>
<li class="del">Deleted text is marked with css class "del" (red).</li>
</ul>
<p>Sections with modified text</p>
<span>
<a href="#sec_hist" class="new">
.1 <span>
History
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_omsoc" class="new">
.2 <span>
<i>OpenMath</i> Society
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_om-arch" class="new">
1.1 <span>
<i>OpenMath</i> Architecture
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_intro-obj" class="new">
1.2 <span>
<i>OpenMath</i> Objects and Encodings
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_addnfiles" class="new">
1.4 <span>
Additional Files
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_basic" class="new">
2.1.1 <span>
Basic <i>OpenMath</i> objects
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_derived" class="new">
2.1.2 <span>
Derived <i>OpenMath</i> Objects
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_compound" class="new">
2.1.3 <span>
<span class="del">Compound</span><i>OpenMath</i> Objects
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_roles" class="new">
2.1.4 <span>
<i>OpenMath</i> Symbol Roles
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_omin" class="new">
2.2 <span>
Further Description of <i>OpenMath</i> Objects
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_names" class="new">
2.3 <span>
Names
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_summary" class="new">
2.4 <span>
Summary
</span>
</a>
</span>
<br/>
<span>
<a href="#ssec_xml" class="new">
3.1.1 <span>
A <span class="del">Grammar</span><span>Schema</span> for the <acronym>XML</acronym> Encoding
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_xml-desc" class="new">
3.1.2 <span>
<span class="new">Informal</span> description of
the <span class="del">Grammar</span><span class="new"><acronym>XML</acronym> Encoding</span>
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_references" class="new">
3.1.3 <span>
Some Notes on References
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_acyclicity" class="new">
3.1.3.1 <span>
An Acyclicity Constraint
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_sharing_bvars" class="new">
3.1.3.2 <span>
Sharing and Bound Variables
</span>
</a>
</span>
<br/>
<span>
<a href="#xmldoc" class="new">
3.1.4 <span>
Embedding <i>OpenMath</i> in <acronym>XML</acronym> Documents
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_binary_grammar" class="new">
3.2.1 <span>
A Grammar for the Binary Encoding
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_bin-desc" class="new">
3.2.2 <span>
Description of the Grammar
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_bin_example" class="new">
3.2.3 <span>
Example of Binary Encoding
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_both_sharing" class="new">
3.2.4 <span>
Sharing
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_sharing" class="new">
3.2.4.1 <span>
Sharing <span class="new">in Objects beginning with the identifier [24]</span>
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_sharing_references" class="new">
3.2.4.2 <span>
Sharing with References (beginning with [24+64])
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_impl_note" class="new">
3.2.5 <span>
Implementation Note
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_relation_OM1_binary" class="new">
3.2.6 <span>
Relation to the <i>OpenMath</i> 1 binary encoding
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_cd_summary" class="new">
4.1 <span>
Introduction
</span>
</a>
</span>
<br/>
<span>
<a href="#sect_func" class="new">
4.2 <span>
Abstract Content Dictionaries
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_status" class="new">
4.2.1 <span>
Content Dictionary Status
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_version" class="new">
4.2.2 <span>
Content Dictionary Version Numbers
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_xml_cd" class="new">
4.3 <span>
The <span class="del"><acronym>XML</acronym></span><span class="new">Reference</span> Encoding for Content Dictionaries
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_cd_schema" class="new">
4.3.1 <span>
The Relax NG Schema for Content Dictionaries
</span>
</a>
</span>
<br/>
<span>
<a href="#sect_pcdata" class="new">
4.3.2 <span>
Further <span class="del">Requirements of an <i>OpenMath</i>
Content Dictionary</span><span class="new">Description of
the CD Schema</span>
</span>
</a>
</span>
<br/>
<span>
<a href="#addfiles" class="new">
4.4 <span>
Additional Information
</span>
</a>
</span>
<br/>
<span>
<a href="#sigfiles" class="new">
4.4.1 <span>
Signature
<span class="del">Files</span><span class="new">Dictionaries</span>
</span>
</a>
</span>
<br/>
<span>
<a href="#sect_sigpcdata" class="new">
4.4.1.1 <span>
<span class="del">Further
Requirements</span><span class="new">Abstract Specification</span>
of a Signature Dictionary
</span>
</a>
</span>
<br/>
<span>
<a href="#sect_sigschema" class="new">
4.4.1.2 <span>
A Relax NG Schema for a Signature Dictionary
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_dtd_cdg" class="new">
4.4.2.1 <span>
The Specification of CDGroups
</span>
</a>
</span>
<br/>
<span>
<a href="#sect_cdgpcdata" class="new">
4.4.2.2 <span>
Further Requirements of a CDGroup
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_compl_xml_encoding" class="new">
5.1.1 <span>
The XML Encoding
</span>
</a>
</span>
<br/>
<span>
<a href="#sec_compl_cd" class="new">
5.3 <span>
Content Dictionaries
</span>
</a>
</span>
<br/>
</div>
<h2><a name="toc" id="toc"/>Contents</h2><a href="#cha_his"> <i>OpenMath</i> Movement</a><br/>
<a href="#sec_hist">.1 History</a><br/>
<a href="#sec_omsoc">.2 <i>OpenMath</i> Society</a><br/><a href="#cha_int">1 Introduction to <i>OpenMath</i></a><br/>
<a href="#sec_om-arch">1.1 <i>OpenMath</i> Architecture</a><br/>
<a href="#sec_intro-obj">1.2 <i>OpenMath</i> Objects and Encodings</a><br/>
<a href="#sec_intro-cd">1.3 Content Dictionaries</a><br/>
<a href="#sec_addnfiles">1.4 Additional Files</a><br/>
<a href="#sec_phrasebooks">1.5 Phrasebooks</a><br/><a href="#cha_obj">2 <i>OpenMath</i> Objects</a><br/>
<a href="#sec_omabs">2.1 Formal Definition of <i>OpenMath</i> Objects</a><br/>
<a href="#sec_basic">2.1.1 Basic <i>OpenMath</i> objects</a><br/>
<a href="#sec_derived" class="new">2.1.2 Derived <i>OpenMath</i> Objects</a><br/>
<a href="#sec_compound">2.1.3 <span class="del">Compound</span><i>OpenMath</i> Objects</a><br/>
<a href="#sec_roles" class="new">2.1.4 <i>OpenMath</i> Symbol Roles</a><br/>
<a href="#sec_omin">2.2 Further Description of <i>OpenMath</i> Objects</a><br/>
<a href="#sec_names" class="new">2.3 Names</a><br/>
<a href="#sec_summary">2.4 Summary</a><br/><a href="#cha_enco">3 <i>OpenMath</i> Encodings</a><br/>
<a href="#sec_xml">3.1 The <acronym>XML</acronym> Encoding</a><br/>
<a href="#ssec_xml">3.1.1 A <span class="del">Grammar</span><span>Schema</span> for the <acronym>XML</acronym> Encoding</a><br/>
<a href="#sec_xml-desc">3.1.2 <span class="new">Informal</span> description of
the <span class="del">Grammar</span><span class="new"><acronym>XML</acronym> Encoding</span></a><br/>
<a href="#sec_references" class="new">3.1.3 Some Notes on References</a><br/>
<a href="#sec_acyclicity" class="new">3.1.3.1 An Acyclicity Constraint</a><br/>
<a href="#sec_sharing_bvars" class="new">3.1.3.2 Sharing and Bound Variables</a><br/>
<a href="#xmldoc">3.1.4 Embedding <i>OpenMath</i> in <acronym>XML</acronym> Documents</a><br/>
<a href="#sec_binary">3.2 The Binary Encoding</a><br/>
<a href="#sec_binary_grammar">3.2.1 A Grammar for the Binary Encoding</a><br/>
<a href="#sec_bin-desc">3.2.2 Description of the Grammar</a><br/>
<a href="#sec_bin_example">3.2.3 Example of Binary Encoding</a><br/>
<a href="#sec_both_sharing">3.2.4 Sharing</a><br/>
<a href="#sec_sharing">3.2.4.1 Sharing <span class="new">in Objects beginning with the identifier [24]</span></a><br/>
<a href="#sec_sharing_references" class="new">3.2.4.2 Sharing with References (beginning with [24+64])</a><br/>
<a href="#sec_impl_note">3.2.5 Implementation Note</a><br/>
<a href="#sec_relation_OM1_binary" class="new">3.2.6 Relation to the <i>OpenMath</i> 1 binary encoding</a><br/>
<a href="#sec_enc_summary">3.3 Summary</a><br/><a href="#cha_cd">4 Content Dictionaries</a><br/>
<a href="#sec_cd_summary">4.1 Introduction</a><br/>
<a href="#sect_func">4.2 Abstract Content Dictionaries</a><br/>
<a href="#sec_status" class="new">4.2.1 Content Dictionary Status</a><br/>
<a href="#sec_version" class="new">4.2.2 Content Dictionary Version Numbers</a><br/>
<a href="#sec_xml_cd">4.3 The <span class="del"><acronym>XML</acronym></span><span class="new">Reference</span> Encoding for Content Dictionaries</a><br/>
<a href="#sec_cd_schema" class="new">4.3.1 The Relax NG Schema for Content Dictionaries</a><br/>
<a href="#sec_dtd_cd" class="del"> The DTD Specification of Content Dictionaries</a><br/>
<a href="#sect_pcdata">4.3.2 Further <span class="del">Requirements of an <i>OpenMath</i>
Content Dictionary</span><span class="new">Description of
the CD Schema</span></a><br/>
<a href="#addfiles">4.4 Additional Information</a><br/>
<a href="#sigfiles">4.4.1 Signature
<span class="del">Files</span><span class="new">Dictionaries</span>
</a><br/>
<a href="#sec_dtd_sig" class="del"> The DTD Specification of Signature Files</a><br/>
<a href="#sect_sigpcdata">4.4.1.1 <span class="del">Further
Requirements</span><span class="new">Abstract Specification</span>
of a Signature Dictionary</a><br/>
<a href="#sect_sigschema" class="new">4.4.1.2 A Relax NG Schema for a Signature Dictionary</a><br/>
<a href="#sect_sigex">4.4.1.3 Examples</a><br/>
<a href="#ssec_cdgroups">4.4.2 CDGroups</a><br/>
<a href="#sec_dtd_cdg">4.4.2.1 The Specification of CDGroups</a><br/>
<a href="#sect_cdgpcdata">4.4.2.2 Further Requirements of a CDGroup</a><br/>
<a href="#cdapprove">4.5 Content Dictionaries Reviewing Process</a><br/><a href="#cha_comp">5 <i>OpenMath</i> Compliance</a><br/>
<a href="#sec_compl_encoding">5.1 Encodings</a><br/>
<a href="#sec_compl_xml_encoding" class="new">5.1.1 The XML Encoding</a><br/>
<a href="#sec_compl_xml_encoding_val">5.1.1.1 Generating Valid XML</a><br/>
<a href="#sec_compl_xml_encoding_float">5.1.1.2 Decimal versus Hexadecimal Float Representation</a><br/>
<a href="#sec_compl_omforeign">5.2 <i>OpenMath</i> Foreign Objects</a><br/>
<a href="#sec_compl_cd">5.3 Content Dictionaries</a><br/>
<a href="#sec_comp_lex">5.4 Lexical Errors</a><br/>
<a href="#sec_compl_om1">5.5 <i>OpenMath</i> 1 Objects</a><br/><a href="#cha_conc"> Conclusion</a><br/><a href="#app_cdfiles">A CD Files</a><br/>
<a href="#app_cdcd">A.1 The <b>meta</b> Content Dictionary</a><br/>
<a href="#arith1.ocd">A.2 The <b>arith1</b> Content Dictionary File</a><br/>
<a href="#arith1.sts">A.3 The <b>arith1</b> STS Signature File</a><br/>
<a href="#mathml.cdg">A.4 The <b>MathML</b> CDGroup</a><br/>
<a href="#errorcd">A.5 The <b>error</b> Content Dictionary</a><br/><a href="#app_openmath.rng">B <i>OpenMath</i> Schema in Relax NG XML Syntax (Normative)</a><br/><a href="#app_relaxrestricted">C Restricting the <i>OpenMath</i> Schema (Non-Normative)</a><br/><a href="#app_xsd">D <i>OpenMath</i> Schema in XSD Syntax (Non-Normative)</a><br/><a href="#app_dtd">E <i>OpenMath</i> DTD (Non-Normative)</a><br/><a href="#app_whats_new">F Changes between <i>OpenMath</i> 1.1 and <i>OpenMath</i> 2 (Non-Normative)</a><br/>
<a href="#chgformal">F.1 Changes to the Formal Definition of Objects</a><br/>
<a href="#chgenc">F.2 Changes to the encodings</a><br/>
<a href="#chgcd">F.3 Changes to Content Dictionaries</a><br/><a href="#bibliography">G Bibliography</a><br/>
<h2>List of Figures</h2><a href="#fig_om">2.1 The <i>OpenMath</i> Architecture</a><br/><a href="#fig_obj">3.1 The <i>OpenMath</i> application and binding objects for
<m:math><m:mi>sin</m:mi> <m:mo>(</m:mo><m:mi>x</m:mi> <m:mo>)</m:mo></m:math> and
<m:math><m:mi>λ</m:mi> <m:mi>x</m:mi><m:mo>.</m:mo><m:mi>x</m:mi> <m:mo>+</m:mo>
<m:mn>2</m:mn></m:math> in tree-like notation.</a><br/><a href="#fig_shared_vs_unshared">4.1 Shared vs. unshared representations</a><br/><a href="#fig_sharing_between" class="new">4.2 Sharing between <i>OpenMath</i> objects (A cycle of order <m:math><m:mn>2</m:mn></m:math>).</a><br/><a href="#fig_bin-enc">4.3 Grammar of the binary encoding of <i>OpenMath</i> objects.</a><br/><a href="#fig_bin-enc_stream">4.4 Streaming a large Integer in the Binary Encoding.</a><br/><a href="#fig_bin-enc_ex">4.5 A Simple example of the <i>OpenMath</i> binary encoding.</a><br/><a href="#fig_bin-enc2" class="new">4.6 A binary encoding of the <i>OpenMath</i> object from <a href="#fig_shared_vs_unshared">Figure 4.1</a>.</a><br/><a href="#fig_cd-dtd" class="del"> DTD Specification of Content Dictionaries</a><br/><a href="#fig_omcdsig.dtd" class="del"> DTD Specification of Signature Files</a><br/><a href="#fig_cdgroup.dtd">5.1 <span class="del">DTD</span><span class="new">Relax NG</span> Specification of CDGroups</a><br/>
<div class="del"><h2 name="cha_his" id="cha_his">
Chapter <br/><i>OpenMath</i> Movement</h2>
<p>This chapter is a historical account of <i>OpenMath</i> and should be regarded
as non-normative.</p>
<p><i>OpenMath</i> is a standard for representing mathematical objects,
allowing them to be exchanged between computer programs, stored in
databases, or published on the worldwide web. While the original
designers were mainly developers of computer algebra systems, it
<span class="del">is now attracting</span>
<span class="new">has since attracted</span>
interest from other areas of scientific computation and
from many publishers of electronic documents with a significant
mathematical content. There is a strong relationship to the MathML
recommendation <a href="#MathML_2003">[17]</a> from the Worldwide Web
Consortium, and a large overlap between the two developer communities.
MathML deals principally with the <i>presentation</i> of
mathematical objects, while <i>OpenMath</i> is solely concerned with their
semantic meaning or <i>content</i>. While MathML does
have some limited facilities for dealing with content, it also allows
semantic information encoded in <i>OpenMath</i> to be embedded inside a MathML
structure. Thus the two technologies may be seen as highly
complementary.</p>
<div><h3 name="sec_hist" id="sec_hist">.1 History</h3>
<p><i>OpenMath</i> was originally developed through a series of workshops held
in Zurich (1993 and 1996), Oxford (1994), Amsterdam (1995), Copenhagen
(1995), Bath (1996), Dublin (1996), Nice (1997), Yorktown Heights
(1997), Berlin (1998), and Tallahassee (1998). The participants in
these workshops formed a global <i>OpenMath</i> community which was coordinated
by a Steering Committee and operated through electronic mailing groups
and ad-hoc working parties. This loose arrangement has been
formalised through the establishment of an <i>OpenMath</i> Society. Up until the
end of 1996 much of the work of the community was funded through a
grant from the Human Capital and Mobility program of the European
Union,
<span class="new"> and by</span>
the contributions of several institutions and individuals. A
document outlining the objectives and basic design of <i>OpenMath</i> was
produced (later published as
<a href="#Abbott_Leeuwen_Strotmann_98">[20]</a>). By the end of 1996
a simplified specification had been agreed upon and some prototype
implementations had come about
<a href="#Dalmas_Gaetano_Watt_97">[21]</a>.</p>
<p>In 1996 a group of European participants in <i>OpenMath</i> decided to bid
for funding under the European Union's Fourth Framework Programme for
strategic research in information technology. This bid was successful
and the project started in late 1997. The principal aims of the
project were to formalise <i>OpenMath</i> as a standard and to develop it
further through industrial applications; this process led to the
OpenMath 1.0 and 1.1 standards which were endorsed at
workshops in Eindhoven (June 1999) and Pisa (September 2002).</p>
<p class="new">In November 1998 the <i>OpenMath</i> Society was established to coordinate
all <i>OpenMath</i> activities. The society is based in Helsinki, Finland and is
coordinated by the executive committee whose members are elected by the
society. The official web page of the society is
<a href="http://www.openmath.org">http://www.openmath.org</a>.</p>
<p class="new">In 2001 the European Union agreed to fund a Thematic Network
under its Fifth Framework programme to coordinate further work on
<i>OpenMath</i> and MathML, and in particular to support a further series of workshops.
This document is one outcome of that project, and seeks to update <i>OpenMath</i>
in the light of recent developments in XML and of the <i>OpenMath</i> community's
collective experience working with the old standard.</p>
</div>
<div><h3 name="sec_omsoc" id="sec_omsoc">.2 <i>OpenMath</i> Society</h3>
<p class="del">In November 1998 the <i>OpenMath</i> Society has been established to coordinate
all <i>OpenMath</i> activities. The society is based in Helsinki, Finland and is
steered by the executive committee whose members are elected by the
society. The official web page of the society is
<a href="http://www.openmath.org">http://www.openmath.org</a>.</p>
<p class="new">The <i>OpenMath</i> Society continues to provide
long-term coordination of <i>OpenMath</i> activities. Membership is open to
anybody who is active in <i>OpenMath</i>; for further details see the web-site
at
<a href="http://www.openmath.org/society/index.html">
http://www.openmath.org/society/index.html</a>.</p>
</div>
</div>
<div><h2 name="cha_int" id="cha_int">
Chapter 1<br/>Introduction to <i>OpenMath</i></h2>
<p>This chapter briefly introduces <i>OpenMath</i> concepts and notions that are
referred to in the rest of this document.</p>
<div><h3 name="sec_om-arch" id="sec_om-arch">1.1 <i>OpenMath</i> Architecture</h3>
<div class="figure"><a name="fig_om" id="fig_om"/>
<img src="om-arch.png" alt="om-arch.png"/>
<div class="caption">
Figure 2.1 The <i>OpenMath</i> Architecture</div></div>
<p>The architecture of <i>OpenMath</i> is described in <a href="#fig_om">Figure 2.1</a> and summarizes the interactions among the different
<i>OpenMath</i> components. There are three layers of representation of a
mathematical object <a href="#OM_98">[23]</a>. The first is
a private layer that
is the internal representation used by an application. The second is
an abstract layer that is the representation as an <i>OpenMath</i> object.
<span class="new">Note that these
two layers may, in some cases, be the same.</span>
The third is a
communication layer that translates the <i>OpenMath</i> object representation into
a stream of bytes. An application dependent program manipulates the
mathematical objects using its internal representation, it can convert
them to <i>OpenMath</i> objects and communicate them by using the byte stream
representation of <i>OpenMath</i> objects.</p>
</div>
<div><h3 name="sec_intro-obj" id="sec_intro-obj">1.2 <i>OpenMath</i> Objects and Encodings</h3>
<p><i>OpenMath</i> objects are representations of mathematical entities that
can be communicated among various software applications in a
meaningful way, that is, preserving their
<span>"semantics"</span>.</p>
<p><i>OpenMath</i> objects and encodings are described in detail in <a href="#cha_obj">Chapter 2</a> and <a href="#cha_enco">Chapter 3</a>.</p>
<p>The standard endorses two encodings in <acronym>XML</acronym> and binary
formats.
<span class="new">At the time of writing, these are the encodings
supported by most existing <i>OpenMath</i> tools and applications,</span>
<span class="del"> These are the encodings supported by
the official <i>OpenMath</i> libraries</span>
however they are not the only possible encodings of <i>OpenMath</i>
objects. Users who wish to define their own encoding
<span class="del">using some other
specific language (e.g. Lisp) may</span>
<span class="new">, are free to</span>
do so provided that there is
<span class="del">an
effective translation from this encoding to an official one
</span>
<span class="new">a well-defined correspondence
between the new encoding and the abstract model defined in <a href="#cha_obj">Chapter 2</a>. </span>
</p>
</div>
<div><h3 name="sec_intro-cd" id="sec_intro-cd">1.3 Content Dictionaries</h3>