-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathcombinat1.omcd
561 lines (561 loc) · 21.6 KB
/
combinat1.omcd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
<OMOBJ xmlns:om="http://www.openmath.org/OpenMath"
xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="meta" name="CD"/>
<OMA>
<OMS cd="meta" name="CDComment"/>
<OMSTR>This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. The copyright holder grants you permission to redistribute this document freely as a verbatim copy. Furthermore, the copyright holder permits you to develop any derived work from this document provided that the following conditions are met. a) The derived work acknowledges the fact that it is derived from this document, and maintains a prominent reference in the work to the original source. b) The fact that the derived work is not the original OpenMath document is stated prominently in the derived work. Moreover if both this document and the derived work are Content Dictionaries then the derived work must include a different CDName element, chosen so that it cannot be confused with any works adopted by the OpenMath Society. In particular, if there is a Content Dictionary Group whose name is, for example, `math' containing Content Dictionaries named `math1', `math2' etc., then you should not name a derived Content Dictionary `mathN' where N is an integer. However you are free to name it `private_mathN' or some such. This is because the names `mathN' may be used by the OpenMath Society for future extensions. c) The derived work is distributed under terms that allow the compilation of derived works, but keep paragraphs a) and b) intact. The simplest way to do this is to distribute the derived work under the OpenMath license, but this is not a requirement. If you have questions about this license please contact the OpenMath society at http://www.openmath.org.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CDName"/>
<OMSTR>combinat1</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CDBase"/>
<OMSTR>http://www.openmath.org/cd</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CDURL"/>
<OMSTR>http://www.openmath.org/cd/combinat1.ocd</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CDReviewDate"/>
<OMSTR>2017-12-31</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CDDate"/>
<OMSTR>2004-03-30</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CDVersion"/>
<OMSTR>3</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CDRevision"/>
<OMSTR>1</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CDComment"/>
<OMSTR>Author: OpenMath Consortium SourceURL: https://github.com/OpenMath/CDs</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CDStatus"/>
<OMSTR>experimental</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="Description"/>
<OMSTR>This CD defines some basic combinatorics definitions.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CDComment"/>
<OMSTR>Written by S. Dalmas (INRIA Sophia Antipolis) for the Esprit OpenMath project.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CDDefinition"/>
<OMA>
<OMS cd="meta" name="Name"/>
<OMSTR>binomial</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="Role"/>
<OMSTR>application</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="Description"/>
<OMSTR>The binomial coefficients. binomial(n, m) is the number of ways of choosing m objects from a collection of n distinct objects without regard to the order.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>binomial(n,m) = n!/(m!*(n-m)!)</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="FMP"/>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="combinat1" name="binomial"/>
<OMV name="n"/>
<OMV name="m"/>
</OMA>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMA>
<OMS cd="integer1" name="factorial"/>
<OMV name="n"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMA>
<OMS cd="integer1" name="factorial"/>
<OMV name="m"/>
</OMA>
<OMA>
<OMS cd="integer1" name="factorial"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMV name="n"/>
<OMV name="m"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="meta" name="Example"/>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="combinat1" name="binomial"/>
<OMI> 4 </OMI>
<OMI> 2 </OMI>
</OMA>
<OMI> 6 </OMI>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="meta" name="CDDefinition"/>
<OMA>
<OMS cd="meta" name="Name"/>
<OMSTR>multinomial</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="Role"/>
<OMSTR>application</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="Description"/>
<OMSTR>The multinomial coefficient, multinomial(n, n1, ... nk) is the number of ways of choosing ni objects of type i (i from 1 to k) without regard to order, in such a way that the total number of objects chosen is n. multinomial(n, n1, ... nk) is equal to n!/(n1!*n2! ...*nk!).</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>multinomial(n, n1, ... nk) is equal to n!/(n1!*n2! ...*nk!) where n=n1+...+nk</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="FMP"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="fns2" name="apply_to_list"/>
<OMS cd="combinat1" name="multinomial"/>
<OMA>
<OMS cd="list2" name="cons"/>
<OMV name="n"/>
<OMV name="nList"/>
</OMA>
</OMA>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMA>
<OMS cd="integer1" name="factorial"/>
<OMV name="n"/>
</OMA>
<OMA>
<OMS cd="fns2" name="apply_to_list"/>
<OMS cd="arith1" name="times"/>
<OMV name="nList2"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="linalg1" name="vector_selector"/>
<OMV name="i"/>
<OMA>
<OMS cd="fns2" name="apply_to_list"/>
<OMS cd="linalg2" name="vector"/>
<OMV name="nlist2"/>
</OMA>
</OMA>
<OMA>
<OMS cd="integer1" name="factorial"/>
<OMA>
<OMS cd="linalg1" name="vector_selector"/>
<OMV name="i"/>
<OMA>
<OMS cd="fns2" name="apply_to_list"/>
<OMS cd="linalg2" name="vector"/>
<OMV name="nList"/>
</OMA>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMV name="n"/>
<OMA>
<OMS cd="fns2" name="apply_to_list"/>
<OMS cd="arith1" name="plus"/>
<OMV name="nList"/>
</OMA>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="meta" name="Example"/>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="combinat1" name="multinomial"/>
<OMI> 8 </OMI>
<OMI> 2 </OMI>
<OMI> 3 </OMI>
<OMI> 3 </OMI>
</OMA>
<OMI> 560 </OMI>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="meta" name="CDDefinition"/>
<OMA>
<OMS cd="meta" name="Name"/>
<OMSTR>Stirling1</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="Role"/>
<OMSTR>application</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="Description"/>
<OMSTR>The Stirling numbers of the first kind. (-1)^(n-m)*Stirling1(n,m) is the number of permutations of n symbols which have exactly m cycles. Note that there are a few slightly different definitions of these numbers.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>Stirling1(n,m) = the sum k=0 to n-m of (-1)^k * binomial(n-1+k, n-m+k) * binomial(2n-m,n-m-k) * Stirling2(n,m)</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="FMP"/>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="combinat1" name="Stirling1"/>
<OMV name="n"/>
<OMV name="m"/>
</OMA>
<OMA>
<OMS cd="arith1" name="sum"/>
<OMA>
<OMS cd="interval1" name="integer_interval"/>
<OMS cd="alg1" name="zero"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMV name="n"/>
<OMV name="m"/>
</OMA>
</OMA>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="k"/>
</OMBVAR>
<OMA>
<OMS cd="arith1" name="times"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMS cd="alg1" name="one"/>
</OMA>
<OMV name="k"/>
</OMA>
<OMA>
<OMS cd="combinat1" name="binomial"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMV name="n"/>
<OMS cd="alg1" name="one"/>
</OMA>
<OMV name="k"/>
</OMA>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMV name="n"/>
<OMV name="m"/>
</OMA>
<OMV name="k"/>
</OMA>
</OMA>
<OMA>
<OMS cd="combinat1" name="binomial"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMA>
<OMS cd="arith1" name="times"/>
<OMI> 2 </OMI>
<OMV name="n"/>
</OMA>
<OMV name="m"/>
</OMA>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMV name="n"/>
<OMV name="m"/>
</OMA>
<OMV name="k"/>
</OMA>
</OMA>
<OMA>
<OMS cd="combinat1" name="Stirling2"/>
<OMV name="n"/>
<OMV name="m"/>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="meta" name="Example"/>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="combinat1" name="Stirling1"/>
<OMI> 10 </OMI>
<OMI> 7 </OMI>
</OMA>
<OMI> -9450 </OMI>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="meta" name="CDDefinition"/>
<OMA>
<OMS cd="meta" name="Name"/>
<OMSTR>Stirling2</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="Role"/>
<OMSTR>application</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="Description"/>
<OMSTR>The Stirling numbers of the second kind. Stirling2(n, m) is the number of partitions of a set with n elements into m non empty subsets. Note that there are a few slightly different definitions of these numbers.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>Stirling2(n,m) = 1/m! * the sum from k=0 to m of (-1)^(m-k) * binomial(m,k) * k^n</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="FMP"/>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="combinat1" name="Stirling2"/>
<OMV name="n"/>
<OMV name="m"/>
</OMA>
<OMA>
<OMS cd="arith1" name="times"/>
<OMA>
<OMS cd="arith1" name="divide"/>
<OMS cd="alg1" name="one"/>
<OMA>
<OMS cd="integer1" name="factorial"/>
<OMV name="m"/>
</OMA>
</OMA>
<OMA>
<OMS cd="arith1" name="sum"/>
<OMA>
<OMS cd="interval1" name="integer_interval"/>
<OMS cd="alg1" name="zero"/>
<OMV name="m"/>
</OMA>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="k"/>
</OMBVAR>
<OMA>
<OMS cd="arith1" name="times"/>
<OMA>
<OMS cd="arith1" name="power"/>
<OMA>
<OMS cd="arith1" name="unary_minus"/>
<OMS cd="alg1" name="one"/>
</OMA>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMV name="m"/>
<OMV name="k"/>
</OMA>
</OMA>
<OMA>
<OMS cd="combinat1" name="binomial"/>
<OMV name="m"/>
<OMV name="k"/>
</OMA>
<OMA>
<OMS cd="arith1" name="power"/>
<OMV name="k"/>
<OMV name="n"/>
</OMA>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="meta" name="Example"/>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="combinat1" name="Stirling2"/>
<OMI> 7 </OMI>
<OMI> 3 </OMI>
</OMA>
<OMI> 301 </OMI>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="meta" name="CDDefinition"/>
<OMA>
<OMS cd="meta" name="Name"/>
<OMSTR>Fibonacci</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="Role"/>
<OMSTR>application</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="Description"/>
<OMSTR>The Fibonacci numbers, defined by the linear recurrence: Fibonacci(0) = 0, Fibonacci(1) = 1, and Fibonacci(n + 1) = Fibonacci(n) + Fibonacci(n - 1). Note that some authors define Fibonacci(0) = 1.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>Fibonacci(0) = 0, Fibonacci(1) = 1, and Fibonacci(n + 1) = Fibonacci(n) + Fibonacci(n - 1)</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="FMP"/>
<OMA>
<OMS cd="logic1" name="and"/>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="combinat1" name="Fibonacci"/>
<OMS cd="alg1" name="zero"/>
</OMA>
<OMS cd="alg1" name="zero"/>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="combinat1" name="Fibonacci"/>
<OMS cd="alg1" name="one"/>
</OMA>
<OMS cd="alg1" name="one"/>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="combinat1" name="Fibonacci"/>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMV name="n"/>
<OMS cd="alg1" name="one"/>
</OMA>
</OMA>
<OMA>
<OMS cd="arith1" name="plus"/>
<OMA>
<OMS cd="combinat1" name="Fibonacci"/>
<OMV name="n"/>
</OMA>
<OMA>
<OMS cd="combinat1" name="Fibonacci"/>
<OMA>
<OMS cd="arith1" name="minus"/>
<OMV name="n"/>
<OMS cd="alg1" name="one"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="meta" name="Example"/>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="combinat1" name="Fibonacci"/>
<OMI> 10 </OMI>
</OMA>
<OMI> 55 </OMI>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="meta" name="CDDefinition"/>
<OMA>
<OMS cd="meta" name="Name"/>
<OMSTR>Bell</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="Role"/>
<OMSTR>application</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="Description"/>
<OMSTR>The Bell numbers: Bell(n) is the total number of possible partitions of a set of n elements.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>Bell(n) = the sum from k=0 to n of Stirling2(n,k)</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="FMP"/>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="combinat1" name="Bell"/>
<OMV name="n"/>
</OMA>
<OMA>
<OMS cd="arith1" name="sum"/>
<OMA>
<OMS cd="interval1" name="integer_interval"/>
<OMS cd="alg1" name="zero"/>
<OMV name="n"/>
</OMA>
<OMBIND>
<OMS cd="fns1" name="lambda"/>
<OMBVAR>
<OMV name="k"/>
</OMBVAR>
<OMA>
<OMS cd="combinat1" name="Stirling2"/>
<OMV name="n"/>
<OMV name="k"/>
</OMA>
</OMBIND>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="meta" name="Example"/>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="combinat1" name="Bell"/>
<OMI> 7 </OMI>
</OMA>
<OMI> 877 </OMI>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>