-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathThreeDgeo3.ocd
351 lines (312 loc) · 10.1 KB
/
ThreeDgeo3.ocd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
<CD xmlns="http://www.openmath.org/OpenMathCD">
<CDComment>
This document is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
The copyright holder grants you permission to redistribute this
document freely as a verbatim copy. Furthermore, the copyright
holder permits you to develop any derived work from this document
provided that the following conditions are met.
a) The derived work acknowledges the fact that it is derived from
this document, and maintains a prominent reference in the
work to the original source.
b) The fact that the derived work is not the original OpenMath
document is stated prominently in the derived work. Moreover if
both this document and the derived work are Content Dictionaries
then the derived work must include a different CDName element,
chosen so that it cannot be confused with any works adopted by
the OpenMath Society. In particular, if there is a Content
Dictionary Group whose name is, for example, `math' containing
Content Dictionaries named `math1', `math2' etc., then you should
not name a derived Content Dictionary `mathN' where N is an integer.
However you are free to name it `private_mathN' or some such. This
is because the names `mathN' may be used by the OpenMath Society
for future extensions.
c) The derived work is distributed under terms that allow the
compilation of derived works, but keep paragraphs a) and b)
intact. The simplest way to do this is to distribute the derived
work under the OpenMath license, but this is not a requirement.
If you have questions about this license please contact the OpenMath
society at http://www.openmath.org.
</CDComment>
<CDName>ThreeDgeo3</CDName>
<CDURL>http://nash.sip.ucm.es/LAD-3D/3DgeoCDs/ThreeDgeo3.ocd</CDURL>
<CDReviewDate>2017-12-31</CDReviewDate>
<CDStatus>experimental</CDStatus>
<CDDate>2008-01-21</CDDate>
<CDVersion>0</CDVersion>
<CDRevision>3</CDRevision>
<CDComment>
Author: Jesús Escribano
</CDComment>
<Description>
This CD defines symbols for 3-dimensional Euclidean geometry
</Description>
<CDDefinition>
<Name>set_affine_coordinates</Name>
<Description>
Defines the affine coordinates of an a point in 3-dimensional Euclidean space.
Takes the point as first argument and the vector with the coordinates as second argument.
</Description>
<Example>
The description of the point A with affine coordinates (4.8,0.6,10.2) is given by:
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="ThreeDgeo1" name="point"/>
<OMV name="A"/>
<OMA>
<OMS cd="ThreeDgeo3" name="set_affine_coordinates"/>
<OMV name="A"/>
<OMA>
<OMS cd="linalg2" name="vector"/>
<OMF dec =" 4.8 "/>
<OMF dec =" 0.6 "/>
<OMF dec =" 10.2 "/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
</Example>
</CDDefinition>
<CDDefinition>
<Name>distance</Name>
<Description>
The distance between two affine points in 3-dimensional Euclidean space is the Euclidean distance.
The distance between two geometric objects O and O' in 3-dimensional Euclidean space is the infimum of the
distances between two affine points, one on O and one on O'.
</Description>
<Example> The distance between two points A and B is given by
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="ThreeDgeo3" name="distance"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
</OMOBJ>
</Example>
</CDDefinition>
<CDDefinition>
<Name>configuration</Name>
<Description>
The symbol represents a configuration in Euclidean 3-dimensional geometry consisting of a sequence of geometric objects like points, lines, etc, but also of other configurations.
</Description>
<Example> The configuration of a point A and a line l incident to A
is defined by:
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="ThreeDgeo3" name="configuration"/>
<OMA>
<OMS cd="ThreeDgeo1" name="point"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="ThreeDgeo1" name="line"/>
<OMV name="l"/>
<OMA>
<OMS cd="ThreeDgeo2" name="incident"/>
<OMV name="A"/>
<OMV name="l"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
</Example>
<Example>
The following is the description of the configuration consisting on two different points A and B and the line l determined by them:
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="ThreeDgeo3" name="configuration"/>
<OMA>
<OMS cd="ThreeDgeo1" name="point"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="ThreeDgeo1" name="point"/>
<OMV name="B"/>
<OMA>
<OMS cd="logic1" name="not"/>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="ThreeDgeo1" name="line"/>
<OMV name="l"/>
<OMA>
<OMS cd="ThreeDgeo2" name="incident"/>
<OMV name="A"/>
<OMV name="l"/>
</OMA>
<OMA>
<OMS cd="ThreeDgeo2" name="incident"/>
<OMV name="B"/>
<OMV name="l"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
</Example>
</CDDefinition>
<CDDefinition>
<Name>assertion</Name>
<Description>
The symbol is a constructor with two arguments.
Its first argument is a 3-dimensional Euclidean geometry configuration, its second argument a statement about the
configuration, called thesis.
When applied to a configuration C and a thesis T, the OpenMath object assertion(C,T)
expresses the assertion that T holds in C.
</Description>
<Example> The assertion that two distinct intersecting lines meet in only one point
can be expressed as follows using the assertion symbol.
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="ThreeDgeo3" name="assertion"/>
<OMA>
<OMS cd="ThreeDgeo3" name="configuration"/>
<OMA>
<OMS cd="ThreeDgeo1" name="point"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="ThreeDgeo1" name="point"/>
<OMV name="B"/>
</OMA>
<OMA>
<OMS cd="ThreeDgeo1" name="line"/>
<OMV name="l"/>
<OMA>
<OMS cd="ThreeDgeo2" name="incident"/>
<OMV name="A"/>
<OMV name="l"/>
</OMA>
<OMA>
<OMS cd="ThreeDgeo2" name="incident"/>
<OMV name="B"/>
<OMV name="l"/>
</OMA>
</OMA>
<OMA>
<OMS cd="ThreeDgeo1" name="line"/>
<OMV name="m"/>
<OMA>
<OMS cd="ThreeDgeo2" name="incident"/>
<OMV name="A"/>
<OMV name="m"/>
</OMA>
<OMA>
<OMS cd="ThreeDgeo2" name="incident"/>
<OMV name="B"/>
<OMV name="m"/>
</OMA>
<OMA>
<OMS cd="logic1" name="not"/>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMV name="l"/>
<OMV name="m"/>
</OMA>
</OMA>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMV name="A"/>
<OMV name="B"/>
</OMA>
</OMA>
</OMOBJ>
</Example>
</CDDefinition>
<CDDefinition>
<Name>locus</Name>
<Description>
The symbol is used to indicate by a variable the locus set traced by a point T in a 3-dimensional Euclidean geometry configuration C. That is, the set of all points satisfying the conditions imposed on T in the configuration C.
The locus may (but need not) be defined by constraints on the point T additional to those in the configuration.
The symbol takes the variable as the first argument, the tracer point T as second argument and the additional constraints as further arguments.
</Description>
<Example>
The following example describes a configuration with the locus set L of all points C equidistant to two given points A and B.
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="ThreeDgeo3" name="configuration"/>
<OMA>
<OMS cd="ThreeDgeo1" name="point"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="ThreeDgeo1" name="point"/>
<OMV name="B"/>
</OMA>
<OMA>
<OMS cd="ThreeDgeo1" name="point"/>
<OMV name="C"/>
</OMA>
<OMA>
<OMS cd="ThreeDgeo3" name="locus"/>
<OMV name="L"/>
<OMV name="C"/>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="ThreeDgeo3" name="distance"/>
<OMV name="A"/>
<OMV name="C"/>
</OMA>
<OMA>
<OMS cd="ThreeDgeo3" name="distance"/>
<OMV name="B"/>
<OMV name="C"/>
</OMA>
</OMA>
</OMA>
</OMA>
</OMOBJ>
</Example>
</CDDefinition>
<CDDefinition>
<Name>discovery</Name>
<Description>
The symbol is used to describe the task of finding necessary conditions for some properties to hold in a geometric configuration in 3-dimensional Euclidean geometry.
The symbol takes a configuration as the first argument and the properties for which necessary conditions are to be sought as further arguments.
</Description>
<Example>
The following example encodes the task of finding necessary conditions for a point C to be equidistant to the points A and B.
<OMOBJ xmlns="http://www.openmath.org/OpenMath" version="2.0">
<OMA>
<OMS cd="ThreeDgeo3" name="discovery"/>
<OMA>
<OMS cd="ThreeDgeo3" name="configuration"/>
<OMA>
<OMS cd="ThreeDgeo1" name="point"/>
<OMV name="A"/>
</OMA>
<OMA>
<OMS cd="ThreeDgeo1" name="point"/>
<OMV name="B"/>
</OMA>
<OMA>
<OMS cd="ThreeDgeo1" name="point"/>
<OMV name="C"/>
</OMA>
</OMA>
<OMA>
<OMS cd="relation1" name="eq"/>
<OMA>
<OMS cd="ThreeDgeo3" name="distance"/>
<OMV name="A"/>
<OMV name="C"/>
</OMA>
<OMA>
<OMS cd="ThreeDgeo3" name="distance"/>
<OMV name="B"/>
<OMV name="C"/>
</OMA>
</OMA>
</OMA>
</OMOBJ>
</Example>
</CDDefinition>
</CD>