-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathSI_Functions1.omcd
182 lines (182 loc) · 9.23 KB
/
SI_Functions1.omcd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
<OMOBJ xmlns:om="http://www.openmath.org/OpenMath"
xmlns="http://www.openmath.org/OpenMath">
<OMA>
<OMS cd="meta" name="CD"/>
<OMA>
<OMS cd="meta" name="CDComment"/>
<OMSTR>This document is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. The copyright holder grants you permission to redistribute this document freely as a verbatim copy. Furthermore, the copyright holder permits you to develop any derived work from this document provided that the following conditions are met. a) The derived work acknowledges the fact that it is derived from this document, and maintains a prominent reference in the work to the original source. b) The fact that the derived work is not the original OpenMath document is stated prominently in the derived work. Moreover if both this document and the derived work are Content Dictionaries then the derived work must include a different CDName element, chosen so that it cannot be confused with any works adopted by the OpenMath Society. In particular, if there is a Content Dictionary Group whose name is, for example, `math' containing Content Dictionaries named `math1', `math2' etc., then you should not name a derived Content Dictionary `mathN' where N is an integer. However you are free to name it `private_mathN' or some such. This is because the names `mathN' may be used by the OpenMath Society for future extensions. c) The derived work is distributed under terms that allow the compilation of derived works, but keep paragraphs a) and b) intact. The simplest way to do this is to distribute the derived work under the OpenMath license, but this is not a requirement. If you have questions about this license please contact the OpenMath society at http://www.openmath.org. Author: Joseph B. Collins (2009), Naval Research Laboratory, Washington, DC. Copyright Notice: This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CDName"/>
<OMSTR>SI_functions1</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CDBase"/>
<OMSTR>http://www.openmath.org/cd</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CDURL"/>
<OMSTR>http://www.openmath.org/cd/SI_functions1.ocd</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CDReviewDate"/>
<OMSTR>2017-12-31</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CDStatus"/>
<OMSTR>experimental</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CDDate"/>
<OMSTR>2009-01-10</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CDVersion"/>
<OMSTR>1</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CDRevision"/>
<OMSTR>1</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CDComment"/>
<OMSTR>Author: J B Collins</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="Description"/>
<OMSTR>This CD defines symbols for functions applied to SI quantities and units.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CDDefinition"/>
<OMA>
<OMS cd="meta" name="Name"/>
<OMSTR>dim</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="Role"/>
<OMSTR>application</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="Description"/>
<OMSTR>The symbol to represent the function that returns the physical dimension of its argument in terms of products of powers of SI base quantities. The dim operation may be meaningfully applied to SI quantities, SI units, and numbers without physical dimension.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>The dim operator acts as the identity operation when applied to an SI base quantity.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>The dim operator returns the corresponding SI base quantity when applied to an SI base unit.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>For named SI derived quantities and named units, the value returned by the dim operator shall be defined for each case.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>The dim operator applied to a product is equal to the associative product of the dim operator applied to the individual factors.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>The dim operator applied to a product is equal to the commutative product of the dim operator applied to the factors.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>The dim operator applied to a multiplicative inverse of a quantity is equal to the multiplicative inverse of the dim operator applied to the same quantity.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>The dim operator returns a value of one when applied to a dimensionless quantity or number.</OMSTR>
</OMA>
</OMA>
<OMA>
<OMS cd="meta" name="CDDefinition"/>
<OMA>
<OMS cd="meta" name="Name"/>
<OMSTR>unit</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="Role"/>
<OMSTR>application</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="Description"/>
<OMSTR>The symbol to represent the function that returns the units of its argument in terms of a product of powers of SI base units.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>The unit operator may be applied to any physical quantity.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>The unit operator applied to an SI base quantity returns the corresponding SI base unit.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>The unit operator applied to an SI base unit or SI coherent unit acts as the identity operator, returning that unit.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>The unit operator applied to any derived quantity is equal to the unit operator applied to the result of applying the dim operator to the same quantity, i.e., unit(Q) = unit(dim(Q)).</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>The unit operator applied to a product is equal to the commutative product of the unit operator applied to the factors.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>The unit operator applied to a product is equal to the associative product of the unit operator applied to the factors.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>The unit operator applied to a multiplicative inverse of a quantity is equal to the multiplicative inverse of the unit operator applied to the same quantity.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>The unit operator returns a value of one when applied to a dimensionless quantity or number.</OMSTR>
</OMA>
</OMA>
<OMA>
<OMS cd="meta" name="CDDefinition"/>
<OMA>
<OMS cd="meta" name="Name"/>
<OMSTR>num</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="Role"/>
<OMSTR>application</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="Description"/>
<OMSTR>The symbol to represent the function to return the numerical value of a quantity in terms of a product of powers of SI base units.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>The num operator may be applied to any physical quantity.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>The num operator applied to an SI base quantity or unit returns the value one.</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="CMP"/>
<OMSTR>The quantity num(Q)*unit(Q), may replace any quantity, Q, in a set of physical relations, if all such quantities in the set of relations are so replaced. The quantity num(Q)*unit(Q) is not always the same as Q, however dim(Q) = dim(num(Q)*unit(Q)).</OMSTR>
</OMA>
</OMA>
<OMA>
<OMS cd="meta" name="CDDefinition"/>
<OMA>
<OMS cd="meta" name="Name"/>
<OMSTR>kind</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="Role"/>
<OMSTR>application</OMSTR>
</OMA>
<OMA>
<OMS cd="meta" name="Description"/>
<OMSTR>The symbol to represent the function to return the kind of a quantity. The value of this function is referred to, but not defined in the SI. Its value, kind(Q) for a given quantity, Q, is left to the user to assign.</OMSTR>
</OMA>
</OMA>
</OMA>
</OMOBJ>