forked from nomeata/mitschriebwiki
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAlgebra.tex
3142 lines (2817 loc) · 201 KB
/
Algebra.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\documentclass[11pt]{book}
\usepackage{etex}
\usepackage{amssymb}
\usepackage[utf8]{inputenc}
\usepackage[T1]{fontenc}
\usepackage{german}
\usepackage[german]{babel}
\usepackage{geometry}
\usepackage{paralist}
\usepackage[explicit]{titlesec}
\usepackage{amsmath}
\usepackage{setspace}
\usepackage{polynom}
\usepackage{stmaryrd}
\usepackage[arrow, matrix, curve]{xy}
\usepackage{float}
\usepackage{titletoc}
\usepackage{pgfplots}
\usepackage{graphicx}
\usepackage{wrapfig}
\usepackage{mathabx}
\usepackage{ifthen}
\usepackage{caption}
\usepackage{subcaption}
\usepackage{latexki}
\lecturer{Prof. Dr. F. Herrlich}
\semester{Wintersemester 14/15}
\scriptstate{complete}
\usepackage[amsmath,thmmarks]{ntheorem}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{motivation}[theorem]{Motivation}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{notations}[theorem]{Notations}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{example}[theorem]{Example}
\newtheorem*{exampleo}[theorem]{Example}
\newtheorem{bemdefini}[theorem]{Remark + definition}
\newtheorem{definibem}[theorem]{Definition + remark}
\newtheorem{erinndefini}[theorem]{Reminder + definition}
\newtheorem{erinner}[theorem]{Reminder}
\newtheorem{propdefini}[theorem]{Proposition + definition}
\newtheorem{definiprop}[theorem]{Definition + proposition}
\newenvironment{proof}[1][\it proof.]{\begin{trivlist}
\item[\hskip \labelsep {#1}]}{\end{trivlist}}
\theoremstyle{nonumberbreak}
\theoremseparator{:}
\theoremindent0.5cm
\theoremheaderfont{\scshape}
\theorembodyfont{\normalfont}
\theoremsymbol{\ensuremath{_\bigboxvoid}}
\RequirePackage{amssymb}
\qedsymbol{\ensuremath{_\bigboxvoid}}
\newenvironment{defin}[1][]{\ifthenelse{\equal{#1}{}}{\definition}{\definition[#1]}\rm}{\enddefinition}
\newenvironment{motiv}[1][]{\ifthenelse{\equal{#1}{}}{\motivation}{\motivation[#1]}\rm}{\endmotivation}
\newenvironment{pr}[1][]{\ifthenelse{\equal{#1}{}}{\proof}{\proof[#1]}\rm}{\endproof}
\newenvironment{ex}[1][]{\ifthenelse{\equal{#1}{}}{\example}{\example[#1]}\rm}{\endexample}
\newenvironment{exo}[1][]{\ifthenelse{\equal{#1}{}}{\exampleo}{\exampleo[#1]}\rm}{\endexampleo}
\newenvironment{bemdefin}[1][]{\ifthenelse{\equal{#1}{}}{\bemdefini}{\bemdefini[#1]}\rm}{\endbemdefini}
\newenvironment{erinndefin}[1][]{\ifthenelse{\equal{#1}{}}{\erinndefini}{\erinndefini[#1]}\rm}{\enderinndefini}
\newenvironment{propdefin}[1][]{\ifthenelse{\equal{#1}{}}{\propdefini}{\propdefini[#1]}\rm}{\endpropdefini}
\newenvironment{definprop}[1][]{\ifthenelse{\equal{#1}{}}{\definiprop}{\definiprop[#1]}\rm}{\enddefiniprop}
\newenvironment{er}[1][]{\ifthenelse{\equal{#1}{}}{\erinner}{\erinner[#1]}\rm}{\enderinner}
\newenvironment{definbem}[1][]{\ifthenelse{\equal{#1}{}}{\definibem}{\definibem[#1]}\rm}{\enddefinibem}
\newenvironment{nota}[1][]{\ifthenelse{\equal{#1}{}}{\notations}{\notations[#1]}\rm}{\endnotations}
\newcommand{\QED}{\hskip\hsize\hskip-\marginparwidth\hskip-\marginparsep\qedsymbol}
\newcommand{\spec}{\rm{spec}\ \it}
\newcommand{\p}{\mathfrak{p}}
\newcommand{\q}{\mathfrak{q}}
\newcommand{\K}{k}
\newcommand{\ideal}{\trianglelefteqslant}
\titlecontents{chapter}[2em]{\addvspace{2pc}\bfseries}{\contentslabel{1.7em}}{}{\titlerule*[1.5pc]{}\contentspage}
\titlecontents{section}[4.5em]{}{\contentslabel{2.5em}}{}{\titlerule*[0.5pc]{.}\contentspage}
\titleformat{\subsection}{\normalfont\normalsize\bfseries}{}{0em}{#1 \thesubsection}
\titleformat{\section}{\normalfont\Large\bfseries}{}{0em}{\thesection #1}
\renewcommand*\thechapter{\Roman{chapter}\quad}
\titlespacing{\chapter}{0pt}{*5}{*1.5}
\titlespacing{\section}{0pt}{*5}{20pt}
\titlespacing{\subsection}{0pt}{16pt}{0pt}
\geometry{a4paper, top=30mm, left=25mm, right=25mm, bottom=30mm, headsep=10mm, footskip=15mm}
\renewcommand{\labelenumi}{(\roman{enumi})}
\renewcommand{\labelenumii}{(\arabic{enumii})}
\setlength{\parindent}{0pt}
\newcommand{\slant}[2]{{\raisebox{.1em}{$#1$}\left/\raisebox{-.1em}{$#2$}\right.}}
\newcommand{\bigslant}[2]{{\raisebox{.2em}{$#1$}\left/\raisebox{-.2em}{$#2$}\right.}}
\usepackage{graphicx}
\newcommand\tabrotate[1]{\rotatebox{90}{#1\hspace{\tabcolsep}}}
\newcommand\verschiebung[1][-.75\normalbaselineskip]{\hspace{#1}}
\makeatletter
\renewcommand*{\env@matrix}[1][*\c@MaxMatrixCols c]{
\hskip -\arraycolsep
\let\@ifnextchar\new@ifnextchar
\array{#1}}
\makeatother
\renewcommand{\chaptermark}[1]{
\markboth{
\MakeUppercase{\thechapter #1}
}{}
}
\renewcommand{\sectionmark}[1]{
\markright{
\MakeUppercase{\thesection#1}
}
}
\usepackage{hyperref}
\begin{document}
\begin{titlepage}
\textrm{ }\\[64pt]
\begin{center}
{\fontsize{40}{40} \selectfont \textbf{Algebra}}
\end{center}
\textrm{ } \\[36pt]
\begin{center} \large{\textrm{lectured by Prof. Dr. Frank Herrlich during fall 2014/2015 at the KIT}} \end{center}
\textrm{ } \\[320pt]
\begin{center} \large{\textit{Written in } \LaTeX \textit{ by Arthur Martirosian, [email protected]}}\end{center}
\textrm{ }\\[24pt]
\begin{center} \large{\today} \end{center}
\end{titlepage}
\thispagestyle{empty}
\begin{spacing}{1.7}
\setcounter{tocdepth}{1}
\tableofcontents
\thispagestyle{empty}
\end{spacing}
\newpage
\begin{spacing}{1.3}
\thispagestyle{empty}
\newcommand{\homs}{\rm{Hom}\it}
\newcommand{\aut}{\rm{Aut}\it}
\newcommand{\gal}{\rm{Gal}\it}
\newcommand{\chara}{\rm{char}\it}
\chapter{Galois theory} %CHAPTER I
\setlength\abovedisplayshortskip{0pt}
\setlength\belowdisplayshortskip{10pt}
\setlength\abovedisplayskip{10pt}
\setlength\belowdisplayskip{10pt}
\renewcommand*\thesection{§ \arabic{section}\quad}
\section{Algebraic field extensions}\index{field extension!algebraic} %SECTION 1
\renewcommand*\thesection{\arabic{section}}
\thispagestyle{empty}
\begin{nota} % Notations 1.1
If $k,L$ are fields and $K\subseteq L$, $L/k$ is called a \textit{field extension}.
The \textit{dimension} $[L:k]:=\dim_{k}L$ of $L$ considered as a $k$-vector space, is called the \textit{degree} of the field extension of $L$ over $k$.
A field extension $L/k$ is called \textit{finite}, if $[L:k]<\infty$.
The \textit{polynomial ring} over $k$ is defined as
$$k[X]:=\left\{f=\sum_{i=0}^n a_i X^{i} \ \bigg \vert \ n \geqslant 0, a_i \in k \textit{ } \forall i \in \{0,...,n\}, a_n \neq 0 \right\} \cup \{0\}.$$
\end{nota}
\begin{er} % Reminder 1.2
Let $L/k$ a field extension, $\alpha \in L$, $f \in k[X]$.
\begin{compactenum}
\item $f(\alpha)$ is well defined.
\item $\phi_{\alpha}: k[X] \rightarrow L$, $f \mapsto f(\alpha)$ is a homomorphism.
\item $\textrm{im}(\phi_{\alpha}):=k[\alpha]$ is the smallest subring of $L$ containing $k$ and $\alpha$.
\item $\ker(\phi_{\alpha})=\left\{f \in k[\alpha] \ \big \vert \ f(\alpha)=0\right\} \triangleleft k[X]$ is a prime ideal.
\item $\ker(\phi_{\alpha})$ is a principle ideal.
\item If $f_{\alpha}\neq 0$ and the leading coefficient of $f_{\alpha}$ is $1$, $f_{\alpha}$ is called the \textit{minimal polynomial} of $\alpha$, i.e. $f_{\alpha}(\alpha)=0$ and $f_{\alpha}$ is the polynomial of smallest degree with this property. In this case, $f_{\alpha}$ is irreducible and $\ker(\phi_{\alpha})=( f_{\alpha} )$ is a maximal ideal.
\item Then $L_{\alpha}:=\slant{k[X]}{\ker(\phi_{\alpha})}=\slant{k[X]}{( f_{\alpha})}$ is a field.
\item We have $k[\alpha]=\textrm{im}(\phi_{\alpha}) \cong \slant{k[X]}{\ker(\phi_{\alpha})}=L_{\alpha}$, if $f_{\alpha}\neq 0$.
Moreover $k[\alpha]=k(\alpha)$, where $k(\alpha)$ is the smallest field containing $k$ and $\alpha$. In particular, $\frac{1}{\alpha} \in k[\alpha]$.
\item The degree of the field extension $k[\alpha]/k$ is $[k[\alpha]:k]=\deg(f_{\alpha})$.
\end{compactenum}
\begin{pr}
\begin{compactenum}
\item[(ii)] For $f,f_1,f_2 \in k[X]$, $\lambda \in k$ we have
$$(f_1+f_2)(\alpha)=f_1(\alpha)+f_2(\alpha)\rm{ and }(\lambda f)(\alpha)=\lambda f(\alpha)$$
\item[(iii)] Clear.
\item[(iv)] Let $f,g \in k[X]$ such that $f\cdot g$, $\in \ker(\phi_{\alpha})$: Then
$$0=(f\cdot g)(\alpha)=f(\alpha) \cdot g(\alpha)$$
and since $L$ has no zero divisors, $f(\alpha)=0$ or $g(\alpha)=0$ and hence $f \in \ker(\phi_{\alpha})$ or $g \in \ker(\phi_{\alpha})$
\item[(v)] Remember that the polynomial ring is euclidean. Take $f_{\alpha} \in \ker(\phi_{\alpha})$ of minimal degree. We will show, that $\ker(\phi_{\alpha})$ is generated by $f_{\alpha}$. Let $g \in \ker(\phi_{\alpha})$ arbitrary and write $$g=q \cdot f_{\alpha} + r\textrm{ with }q,r \in k[X], \qquad \deg(r)<\deg(f_{\alpha})\textrm{ or }r=0.$$Since $r=q\cdot f_{\alpha} \in \ker(\phi_{\alpha})$ and the choice of $f_{\alpha}$, $\deg(r) \nless \deg(f_{\alpha})$, hence $r=0$ $\Rightarrow g \in ( f_{\alpha} )$.
\item[(vi)] If $f_{\alpha}=g \cdot h$, either $g(\alpha)=0$ or $h(\alpha)=0$. As above, this implies $g \in k$ or $h \in k^{\times}$, i.e. $f$ or $g$ is irreducible.
Now assume, there is and ideal $I \trianglelefteqslant k[X]$ satisfying $( f_{\alpha}) \subsetneq I \subsetneq k[K]$.
Let $g \in I \setminus ( f_{\alpha})$, such that $( g ) = I $. Such a $g$ exists by proof of (v). Then $f_{\alpha}=g \cdot h$, $h \in k[X]$. This implies, that either $g$ or $h$ is a constant polynomial, hence a unit. In the first case, $I=k[X]$ and in the second one $I=( f_{\alpha})$, which implies the claim.
\item[(vii)] We show the more general argument: If $R$ is a ring, $\mathfrak{m} \triangleleft R$ a maximal ideal, then $\slant{R}{\mathfrak{m}}$ is a field. Let $\overline{a} \in \slant{R}{\mathfrak{m}}$ for some $a \in R$, $\overline{a}\neq 0$. Let $I:=( \mathfrak{m}, a)$ the smallest ideal in $R$ containing $\mathfrak{m}$ and $a$. Since $\overline{a} \neq 0$, hence $a \notin \mathfrak{m}$ we have $\mathfrak{m} \subsetneq I$ and since $\mathfrak{m}$ is a maximal ideal, $I=R$. Hence $1 \in I$, so we can write $1=x+ab$ for some $x \in \mathfrak{m}$ and $b \in R$. Then we get
$$\overline{1}=\overline{x+ab}=\overline{x}+\overline{a}\overline{b}=\overline{a}\overline{b},$$ hence $\overline{a}$ is invertible in $\slant{R}{\mathfrak{m}}$.
\item[(viii)] Let $$f_{\alpha}=\sum_{i=0}^n a_i X^{i}$$
Note, that $a_n=1$ and $a_0 \neq 0$, since $f_{\alpha}$ is irreducible. We get\\[-27pt]
\begin{alignat*}{5}
&\Longrightarrow \qquad &&0&&\ =\ f_{\alpha}(\alpha)=\sum_{i=0}^n a_i \alpha^{i}=a_0 + a_1 \alpha + \dots + a_n \alpha^n\\
&\Longrightarrow \qquad &&a_0&&\ =\ - \alpha \cdot \left(a_1+a_2 \alpha+ \dots + a_{n-2}\alpha^{n-2}+\alpha^{n-1}\right)\\
&\Longrightarrow \qquad &&1&&\ =\ -\alpha \cdot \left(\frac{a_1}{a_0}+\frac{a_2}{a_0}\alpha+ \dots + \frac{a_{n-2}}{a_0} \alpha^{n-2}+\frac{1}{a_0} \alpha{n-1}\right)\\
&\Longrightarrow \qquad &&\frac{1}{\alpha}&&\ =\ -\frac{a_1}{a_0}-\frac{a_2}{a_0}\alpha- \dots - \frac{a_{n-2}}{a_0} \alpha^{n-2}-\frac{1}{a_0} \alpha^{n-1}
\end{alignat*}\\[-24pt]
Hence $\frac{1}{\alpha} \in k[X]$ and $k[X]$ is a field.
\item[(ix)] The family $\{1,\alpha, \dots , \alpha^{n-1}\}$ forms a basis of $k[\alpha]$ as a $k$-vector space. $\hfill \Box$
\end{compactenum}
\end{pr}
\end{er}
\begin{ex} %%Example 1.3
Let $k=\mathbb{Q}$, $L=\mathbb{C}$, $\alpha=1+i$, $\beta = \sqrt{2}$. Then the minimal polynomials of $\alpha$ and $\beta$ are
\begin{center}$f_{\alpha}=\left(X-1\right)^2+1$, \textrm{ } $f_{\beta}=X^2-2$.\end{center}
\end{ex}
\begin{proposition}[\rm \it Kronecker] %%%Proposition 1.4
Let $k$ be a field, $f \in k[X]$, $\deg(f)\geqslant 1$.\\
Then there exists a finite field extension $L/k$ and $\alpha \in L$, such that $f(\alpha)=0$.
\begin{pr}
W.l.o.g. we may assume, that $f$ is irreducible, since $f=g \cdot h =0$ $\Rightarrow$ $g=0$ or $h=0$. Then by 1.2 $( f )= \left\{f \cdot g \ \big \vert \ g \in k[X]\right\}$ is a maximal ideal and $L:=\slant{k}{( f )}$ is a field.\\
Clearly $k$ is a subfield of $L$, since $( f)$ does not contain any constant polynomial, i.e., if
\begin{center}$ \pi: k[X] \longrightarrow \slant{k[X]}{( f )}$\end{center}
denotes the residue map, we have $\ker(\pi) \cap k=\{0\}$, hence $\pi|_{k}$ is injective.
Write $$f=\sum_{i=0}^n a_i X^{i}.$$ Then we have
$$f\left(\pi(X)\right)=\sum_{i=0}^n a_i \pi(X)^{i}= \sum_{i=0}^{n}\pi(a_i) \pi(X)^{i}=\pi \left(\sum_{i=0}^n a_i X^{i}\right) = \pi(f)=0,$$
hence $\alpha:=\pi(X)$ is a zero of $f$ in $L$.
Moreover $L/k$ is finite with degree $[L:k]=\deg(f)=n$, since $\{1,\alpha, \dots ,\alpha^{n-1}\}$ is basis of $L$ as a $k$-vector space.
For the independence write $$\sum_{i=0}^{n-1} \lambda_i \alpha^{i}=0, \qquad \lambda_i \in k.$$Assume, there is $0\leqslant j \leqslant n-1$ with $\lambda_j \neq 0$. Then the polynomial $$g=\sum_{i=0}^{n-1} \lambda_i X^{i}$$ satisfies $g(\alpha)=0$ with $\deg(g)<\deg(f)$, which is not possible by irreducibility of $f$.
It remains to show, that $L$ is generated by the powers of $\alpha$. We have $\alpha^n+a_{n-1}\alpha^{n-1}+ \dots +a_1 \alpha+a_0 = 0$, hence we write
$$\alpha^n=-\left(a_{n-1}\alpha^{n-1}+ \dots + a_1 \alpha + a_0\right) \in ( 1, \dots , \alpha^{n-1}).$$
By induction on $n$, we get $\alpha^k \in ( 1, \dots , \alpha^{n-1})$ for all $k \geqslant n$. $\hfill \Box$
\end{pr}
\end{proposition}
\begin{ex} %%Beispiel 1.5
Let $k=\mathbb{Q}$, $f=X^n-a$ for some $a \in \mathbb{Q}$. For now we assume that $f$ is irreducible (we may be able to prove this later). Then
$$L:=\slant{\mathbb{Q}[X]}{( f )}=\slant{\mathbb{Q}[X]}{( X^n-a)} \cong \mathbb{Q}[\sqrt[n]{a}]=\mathbb{Q}(\sqrt[n]{a})$$
and the degree of the extension is equal to $n$.
\end{ex}
\begin{defin} %Definition 1.6
Let $L/k$ a field extension, $\alpha \in L$.
\begin{compactenum}
\item $\alpha$ is called \textit{algebraic over} $k$, if there exists $f \in \mathbb{X}[X] \setminus \{0\}$, such that $f(\alpha)=0$.
\item Otherwise $\alpha$ is called \textit{transcendental}.
\item $L/k$ is called an \textit{algebraic field extension}, if every $\alpha \in L$ is algebraic over $k$.
\end{compactenum}
\end{defin}
\begin{proposition} %Proposition 1.7
Every finite field extension $L/k$ is algebraic.
\begin{pr}
Let $\alpha \in L$, $n:=[L:k]$ the degree of $L/k$. Then $1,\alpha, \dots \alpha^{n}$ are linearly dependant over $k$, i.e. there exist $\lambda_0,...,\lambda_n \in k$, $\lambda_j \neq 0$ for at least one $0 \leqslant j \leqslant n$, such that $$\sum_{i=0}^{n} \lambda_i \alpha^{i}=0.$$
Hence the polynomial $$f=\sum_{i=0}^n \lambda_i X^{i} \neq 0$$ satifies $f(\alpha)=0$, thus $\alpha$ is algebraic over $k$. Since $\alpha$ was arbitrary, $L/k$ is algebraic. $\hfill \Box$
\end{pr}
\end{proposition}
\begin{proposition} % Proposition 1.8
Let $L/k$ a field extension, $\alpha, \beta \in L$.
\begin{compactenum}
\item If $\alpha, \beta$ are algebraic over $k$, then $\alpha + \beta$, $\alpha - \beta$, $\alpha \cdot \beta$ are also algebraic over $k$.
\item If $\alpha \neq0$ is algebraic over $k$, then $\frac{1}{\alpha}$ is also algebraic over $k$.
\item $k_{L}:=\left\{\alpha \in L \big \vert \alpha \textrm{ is algebraic over } k\right\} \subseteq L$ is a subfield of $L$.
\end{compactenum}
\begin{pr}
\begin{compactenum}
\item Since $\alpha \in L$ is algebraic over $k$ $\Rightarrow$ $k[\alpha]=k(\alpha)$ is a finite field extension of $k$.
Since $\beta$ is algebraic over $k \Rightarrow$ $\beta$ is algebraic over $k[\alpha]$, hence $\left(k[\alpha]\right)[\beta]/k[\alpha]$ is a finite field extension.
Further, we have $$k \subseteq k[a] \subseteq \left(k[\alpha]\right)[\beta]=k[\alpha, \beta].$$ Thus $k[\alpha, \beta]/k$ is algebraic with Proposition 1.5.
This implies the claim, as $\alpha + \beta$, $\alpha-\beta$, $\alpha \cdot \beta \in k[\alpha, \beta]$.
\item If $\alpha \neq 0$, $\frac{1}{\alpha}$ is algebraic over $k$ with part (i).
\item Follows from (i) and (ii). $\hfill \Box$
\end{compactenum}
\end{pr}
\end{proposition}
\begin{definprop} % Definition + Proposition 1.9
Let $k$ be a field, $f \in k[X]$, $\deg(f)=n$.
\begin{compactenum}
\item A field extension $L/k$ is called a \textit{splitting field of} $f$, if $L$ is the smallest field in which $f$ decomposes into linear factors.
\item A splitting field $L(f)$ exists.
\item The field extension $L(f)/k$ is algebraic over $k$.
\item For the degree we have $[L(f):k] \leqslant n!$.
\end{compactenum}
\textit{proof.}
\begin{compactenum}
\item[(ii)] Do this by induction on $n$.
\begin{compactenum}
\item[\textbf{n=1}] Clear.
\item[\textbf{n>1}] Write $f= f_1 \cdot \cdot \cdot f_r$ with irreducible polynomials $f_i \in k[X]$. Then $f$ splits if and only every $f_i$ splits. Hence we may assume that $f$ is irreducible\\
Consider $L_1:=\slant{k}{( f )}$. Then $f$ has a zero in $L_1$; say $\alpha$. Then we have $L_1=k[\alpha]$. Now we can write $f = (X-\alpha) \cdot g$ for some $g \in k[X]$ with $\deg(g)=n-1$. By induction hypothesis, there exists a splitting field $L(g)$ for $g$. Then $f$ splits over $L(g)[\alpha]$.
\end{compactenum}
\item[(iii)] Follows by part (iv) and Proposition 1.5
\item[(iv)] Do this again by induction.
\begin{compactenum}
\item[\textbf{n=1}] Clear.
\item[\textbf{n>1}] In the notation of part (ii) we have $[k[\alpha]:k]=\deg(f)=n$. By the multiplication formula for the degree and induction hypothesis we have
$$[L(f):k]=[L(g)[\alpha]:k]=[L(g)[\alpha]:L(g)] \cdot [L(g): k] \leqslant n \cdot (n-1)!=n!$$
\end{compactenum}
\end{compactenum}
\end{definprop}
\begin{definprop} % Definition + Proposition 1.10
Let $k$ be a field.
\begin{compactenum}
\item $k$ is called \textit{algebraically closed}, if every $f \in k[X]$ splits over $k$.
\item The following statements are equivalent:
\begin{compactenum}
\item $k$ is algebraically closed
\item Every nonconstant polynomial $f \in k[X]$ has a zero in $k$.
\item There is no proper algebraic field extension of $k$.
\item If $f \in k[X]$ is irreducible, then $\deg(f)=1$.
\end{compactenum}
\end{compactenum}
\begin{pr}
\begin{compactitem}
\item['(1) $\Rightarrow$ (2)'] Let $f \in k[X]$ be a non-constant polynomial of degree $n$. Then $f$ splits over $k$, i.e. we have a presentation $$f=\prod_{i=0}^n (X-\lambda_i)$$ with $\lambda_i \in k$ for $1\leqslant i \leqslant n$. Every $\lambda_i$ is a zero. Since $n\geqslant 1$, we find a zero for any nonconstant polynomial.
\item['(2) $\Rightarrow$ (3)'] Assume $L/k$ is algebraic, $\alpha \in L$. Let $f_{\alpha}$ be the minimal polynomial of $\alpha$. By assumption, $f_{\alpha}$ has a zero in $k$. Since $f_{\alpha}$ is irreducible, we must have $f_{\alpha}=X-\alpha$, hence $\alpha \in k$, since $f \in k[X]$.
\item['(3) $\Rightarrow$ (4)'] Let $f \in k[X]$ irreducible. Then $L:=\slant{k[X]}{( f)}$ is an algebraic field extension. By (3), $L=k$, hence $1=[L:k]=\deg(f)$.
\item['(4) $\Rightarrow$ (1)'] For $f \in k[X]$ write $f=f_1 \cdot \cdot \cdot f_r$ with irreducible polynomials $f_i$ for $1\leqslant i \leqslant r$.\newline With (4), $\deg(f_i)=1$ for any $i$, hence $f$ splits. $\hfill \Box$
\end{compactitem}
\end{pr}
\end{definprop}
\begin{lemma} % Lemma 1.11
Let $k$ be a field.
Then there exists an algebraic field extension $k'/k$, such that every $f \in k[X]$ has a zero in $k'$.
\begin{pr}
For every irreducible polynomial $f \in k[X]$ introduce a symbol $X_f$ and consider
$$R:=k[ \left\{X_f \big \vert f \in k[X] \textrm{ irreducible}\right\}] \supseteq k.$$
Monomials in $R$ look like $$g=\lambda \cdot X_{f_1}^{n_1}X_{f_2}^{n_2}\cdots X_{f_k}^{n_k}$$ with $\lambda \in k$, $n_i \in \mathbb{N}$.
Let $I \trianglelefteqslant R$ be the ideal generated by the $f(X_f)$, $f \in k[X]$ irreducible.
The following claims prove the lemma:\\
\textbf{Claim (a)} $I \neq R$\\
\textbf{Claim (b)} There exists a maximal ideal $\mathfrak{m} \trianglelefteqslant R$ containing $I$.\\
\textbf{Claim (c)} $k'=\slant{R}{\mathfrak{m}}$\\
To finish the proof, it remains to show the claims.
\begin{compactenum}
\item[\textbf{(a)}] Assume $I=R$. Then $1 \in I$, i.e. $$1= \sum_{i=1}^k g_{f_i} f_i\left(X_{f_i}\right)$$ for suitable $g_{f_i} \in R$.
Let $L/k$ be a field extension in which all $f_i$ have a zero $\alpha_i$. Define a ring homomorphism by
\begin{center} $\pi: R \longrightarrow L$, $X_f \mapsto \begin{cases} \alpha_i, & f=f_i \\ 0, & \textrm{otherwise} \end{cases}$\end{center}
Then we obtain
$$1=\pi(1)= \pi \left(\sum_{i=1}^k g_{f_i} f_i\left(X_{f_i}\right)\right)=\sum_{i=1}^k \pi(g_{f_i}) f_i \left(\pi(X_{f_i})\right)=\sum_{i=1}^k \pi(g_{f_i}) f_i \left(\alpha_i\right)=0,$$
hence our assumption was false and we have $I \neq R$.
\item[\textbf{(b)}] Let $\mathcal{S}$ be the set of all proper ideals of $R$ containing $I$. By claim 2, $I \in \mathcal{S}$.
Let now $$S_1 \subseteq S_2 \subseteq S_3 \subseteq \dots$$ be elements of $\mathcal{S}$.
More generally let $N$ be a totally ordered subset of $\mathcal{S}$ and $$S:=\bigcap_{J \in N} J$$Then $S \in \mathcal{S}$, hence $\mathcal{S}$ is nonempty. By Zorn's Lemma we know that $\mathcal{S}$ contains a maximal element $\mathfrak{m}\neq R$. Then $\mathfrak{m}$ is maximal ideal of $R$, since an ideal $J \trianglelefteqslant R$ satisfying $\mathfrak{m} \subsetneq J \subsetneq R$ is contained in $\mathcal{S}$, which is a contradiction considering the choice of $\mathfrak{m}$.
\item[\textbf{(c)}] Clearly $k'$ is a field extension of $k$.
Let $f \in k[X]$ be irreducible and\\ $\pi: R \longrightarrow \slant{k}{\mathfrak{m}}$ denote the residue map. Then $$f(X_f) \in I \subseteq \mathfrak{m}$$i.e. we have $$\pi(X_f)=0$$ and thus $f\left(\pi(X_f)\right)=0$. Hence $\pi(X_f)$ is algebraic over $k$.\\
Since $k'$ is generated by the $\pi(X_f)$, $k'/k$ is algebraic, which finishes the proof. $\hfill \Box$
\end{compactenum}
\end{pr}
\end{lemma}
\begin{theorem} %Theorem 1.12
Let $k$ be a field. Then there exists an algebraic field extension $\overline{k}/k$ such that $\overline{k}$ is algebraically closed. $\overline{k}$ is called the \textit{algebraic closure} of $k$.
\begin{pr}
By Lemma 1.9 there is an algebraic field extension $k'/k$, such that every $f \in k[X]$ has a zero in $k'$.
Then let $$k_0:=k, \quad k_1=k_0', \quad k_2=k_1', \quad k_{i+1}=k_i' \qquad \textrm{ for } i \geqslant 1$$
Clearly $k_i$ is algebraic over $k$ for all $i \in \mathbb{N}_0$ and $k_i \subseteq k_{i+1}$.
Define $$\overline{k}:= \bigcup_{i \in \mathbb{N}_0} k_i$$Then $\overline{k}/k$ is an algebraic field extension. For $f \in \overline{k}[X]$ we find $i \in \mathbb{N}_0$ with $f \in k_i[X]$, hence $f$ has a zero in $k_i$. With proposition 1.8, $\overline{k}$ is algebraically closed. $\hfill \Box$
\end{pr}
\end{theorem}
% SECTION 2
\renewcommand*\thesection{§ \arabic{section}\quad}
\section{Simple field extensions}
\renewcommand*\thesection{\arabic{section}}
\begin{defin} \index{field extension!simple} % Definition 2.1
A field extension $L/k$ is called \textit{simple}, if there exists some $\alpha \in L$ such that $L=k[\alpha].$
\end{defin}
\begin{ex} %Beispiel 2.2
Let $f \in k[X]$ be irreducible, $L:=\slant{k[X]}{( f)}$.
Then $L=k[\alpha]$ where $\alpha= \pi(X)=\overline{X}$ and $\pi: k[X] \longrightarrow L$ denotes the residue map.
Conversely, if $L/k$ is simple and algebraic, then $L=k[\alpha]$ for some algebraic $\alpha \in L$. Let $f \in k[X]$ be the minimal polynomial of $\alpha$ over $k$, then $$L=k[\alpha]=k(\alpha)=\slant{k[X]}{( f )}.$$
\end{ex}
\begin{proposition} % Proposition 2.3
Let $L$ be a field. Then any finite subgroup $G$ of the multiplicative group $L^{\times}$ is cyclic.
\begin{pr}
Let $\alpha \in G$ be an element of maximal order, $n :=\textrm{ord}(\alpha)$. Define $$G':=\{\beta \in G: \textrm{ord}(\beta) \big \vert n \}$$
We first show $G'=G$ and then $G'=( \alpha )$.
Let $\beta \in G$, $m:= \textrm{ord}(\beta)$. Then $$\textrm{ord}(\alpha \beta)=\textrm{lcm}(m,n)\leqslant n$$by the property of $n$. Thus $m \big \vert n$ and $\beta \in G'$ and hence $G \subseteq G'$. Since $G' \subseteq G$ by definition, we have $G'=G$.
Let now $\gamma \in G'$. We have $\gamma^n=1$, hence $\gamma$ is zero of $$f= X^n-1$$$f$ has at most $n$ zeros, but since $\vert( \alpha )\vert=n$, we have $( \alpha ) = G'$ which finishes the proof. $\hfill \Box$
\end{pr}
\end{proposition}
\begin{corollary} % Corollary 2.4
Let $k$ be a finite field. Then every finite field extension $L/k$ is simple.
\begin{pr}
We have $|L|=|k|^{[L:k]}$ and thus $L$ is also finite. With proposition 2.2 there exists some $\alpha \in L$ such that
$L^{\times}=L \setminus \{0\}=( \alpha )$, hence $L=k[\alpha],$
which proves the claim. $\hfill \Box$
\end{pr}
\end{corollary}
\begin{remark} %Remark 2.5
Let $L/k$ be a finite field extension, $f \in k[X]$ and $\alpha \in L$ a zero of $f$. Let $\overline{k}$ be an algebraic closure of $k$ and $\sigma: L \longrightarrow \overline{k}$ a homomorphism of field such that $\sigma|_{k}=\textrm{id}_{k}$.
Then $\sigma(\alpha)$ is a zero of $f$.
\begin{pr}
Write $$f=\sum_{i=0}^n a_i X^{i}$$ with coefficients $a_i \in k$, hence we have $\sigma(a_i)=a_i$ for $0\leqslant i \leqslant n$. We obtain
$$f\left(\sigma(\alpha)\right)=\sum_{i=0}^n a_i \left(\sigma(\alpha)\right)^{i}=\sum_{i=0}^n \sigma(a_i) \left(\sigma(\alpha)\right)^{i}=\sigma\left(\sum_{i=0}^n a_i \alpha^{i}\right)=\sigma\left(f(\alpha)\right)=\sigma(0)=0,$$
which finishes the proof. $\hfill \Box$
\end{pr}
\end{remark}
\begin{theorem} % Theorem 2.5
Let $L/k$ be a finite field extension of degree $n:=[L:k]$ and $\overline{k}$ an algebraic closure of $k$.
If there exist $n$ different field homomorphisms $\sigma_1, \dots \sigma_n: k \longrightarrow L$ such that $\sigma_i |_{k}=\textrm{id}_{k}$, then $L/k$ is simple.
\begin{pr}
Let $L=k[\alpha_1,...,\alpha_r]$ for some $r\geqslant 1 $ and $\alpha_i \in L$. Prove the statement by induction on $r$.
\begin{compactitem}
\item[\textbf{r=1}] $L=k[\alpha_1]$, hence $L$ is simple.
\item[\textbf{r>1}] Let now $L'=k[\alpha_1, \dots \alpha_{r-1}]$. By hypothesis, $L'/k$ is simple, say $L=k[\beta]$. Then we have $$L=k[\alpha_1, \dots \alpha_r]=L'[\alpha_r]=k[\alpha, \beta]$$ with $\alpha:=\alpha_r$.
For $\lambda \in k$ consider $$\gamma:=\gamma_{\lambda}=\alpha + \lambda \beta.$$By remark 2.4 it suffices to show $$\sigma_i(\gamma) \neq \sigma_j(\gamma) \textrm{ for }i\neq j.$$Assume there are $i\neq j$ such that $\sigma_i(\gamma)=\sigma_j(\gamma)$.
Then $$\sigma_i(\alpha)+ \lambda \sigma_i(\beta)=\sigma_j(\alpha)+\lambda \sigma_j(\beta),$$so we get $$\sigma_i(\alpha)-\sigma_j(\alpha)+\lambda\left(\sigma_i(\beta)-\sigma_j(\beta)\right)=0.$$Consider the polynomial $$g:=\prod_{1\leqslant i \neq j \leqslant n}\sigma_i(\alpha)-\sigma_j(\alpha)+X\cdot\left(\sigma_i(\beta)-\sigma_j(\beta)\right).$$
By proposition 2.2 we may assume, that $k$ is infinite. Note that $g$ is not the zero polynomial: If $g=0$, we find $i\neq j$ such that $\sigma_i(\alpha)=\sigma_j(\alpha)$ and $\sigma_i(\beta)=\sigma_j(\beta)$. Since $\alpha, \beta$ generate $L$, $\sigma_i$ and $\sigma_j$ must be equal on $L$, which is a contradiction.
Therefore we find $\lambda \in k$, such that $g(\lambda)\neq 0$. Hence the minimal polynomial $m_{\gamma_{\lambda}}$ of $\gamma_{\lambda}=\alpha + \lambda \beta$ has at least $n$ zeroes, i.e. $$\deg(m_{\gamma_{\lambda}}) \geqslant n \Rightarrow [k[\gamma_{\lambda}]:k]\geqslant n$$ and hence $k[\gamma_{\lambda}]=L$. $\hfill \Box$
\end{compactitem}
\end{pr}
\end{theorem}
\begin{proposition} % Proposition 2.7
Let $L=k[\alpha]$ be a simple, finite field extension, $\overline{k}$ an algebraic closure of $k$. Let $f \in k[X]$ the minimal polynomial of $\alpha$. Then for every zero $\beta$ of $f$ in $\overline{k}$ there exists a unique homomorphism of fields $\sigma: L \longrightarrow \overline{k}$ such that $\sigma(\alpha)=\beta$.
\begin{pr}
The uniqueness is clear. It remains to show the existence.
Define $$\phi_{\beta}:k[X] \longrightarrow \overline{k}, \qquad g \mapsto g(\beta).$$ We have $f(\beta)=0$, thus $( f ) \subseteq ker(\phi_{\beta})$ and hence $\phi_{\beta}$ factors to a homomorphism $$\overline{\phi_{\beta}}: L \cong \slant{k[X]}{( f )} \longrightarrow \overline{k}$$such that $\phi_{\beta}=\overline{\phi_{\beta}}\circ \pi$ where $\pi: k[X] \longrightarrow \slant{k[X]}{( f )}$ denotes the residue map. Let $$\tau: L \longrightarrow \slant{k[X]}{( f )}$$ be an isomorphism. Then
$$\sigma:= \overline{\phi_{\beta}} \circ \tau: L \longrightarrow \overline{k}$$ satisfies $$\sigma(\alpha)=\left(\overline{\phi_{\beta}} \circ \tau\right)(\alpha)=\overline{\phi_{\beta}}\left(\tau(\alpha)\right)=\overline{\phi_{\beta}}(\overline{X})=\overline{\phi_{\beta}}\left(\pi(X)\right)=\phi_{\beta}(X)=\beta,$$
thus the claim. $\hfill \Box$
\end{pr}
\end{proposition}
\begin{corollary} % Corollary 2.8
Let $f \in k[X]$ be a nonconstant polynomial. Then the splitting field of $f$ over $k$ is unique, i.e. any two splitting fields $L, L'$ of $f$ over $k$ are isomorphic.
\begin{pr}
Let $L=k[\alpha_1, \dots \alpha_n]$, $L'=k[\beta_1, \dots \beta_m]$.\\
Assume that $f$ is irreducible. W.l.o.g. we have $f(\alpha_1)=f(\beta_1)=0$. By Proposition 2.6 we find field homomorphisms\\
$$\sigma_1: k[\alpha_1] \longrightarrow k[\beta_2] \textrm{ such that }\sigma_1 |_{k}=\rm{id}_{k}\textrm{ and }\alpha_1 \mapsto \beta_1$$
$$\tau_1: k[\beta_1] \longrightarrow k[\alpha_1] \textrm{ such that }\tau_1 |_{k}=\rm{id}_{k}\textrm{ and }\beta_1 \mapsto \alpha_1$$
Hence, since $\sigma_1 \circ \tau_1 = \rm{id}_{k[\beta_1]}$ and $\tau_1 \circ \sigma_1 = \rm{id}_{k[\alpha_1]}$, $\sigma_1$ and $\tau_1$ are isomorphisms, i.e $k[\alpha_1] \cong k[\beta_1]$.\\
By induction on $n$ the corollary follows.$\hfill \Box$
\end{pr}
\end{corollary}
\begin{definprop} % Definition + Proposition 2.9
Let $L/k$, $L'/k$ be field extension.
\begin{compactenum}
\item We define $$\textrm{Hom}_{k}(L,L'):=\left\{\sigma: L\longrightarrow L' \textrm{ field homomorphism s.t. } \sigma |_{k}=\textrm{id}_{k}\right\}$$
$$\textrm{Aut}_{k}(L):=\left\{\sigma: L \longrightarrow L \textrm{ field automorphism s.t. } \sigma |_{k}=\textrm{id}_{k} \right\}$$
\item If $L/k$ is finite, $\overline{k}$ an algebraic closure of $k$, then
$$ \vert \textrm{Hom}_{k}(L,L') \vert \leqslant [L:k].$$
\end{compactenum}
\begin{pr}
Assume first $L=k[\alpha]$ for some algebraic $\alpha \in L$.
Let $f$ be the minimal polynomial of $\alpha$ over $k$, i.e. $f \in k[X]$, $\deg(f)=[L:k]$.
By 2.4 and 2.6, the elements oh $\rm{Hom}_{k}(L, \overline{k})$ correspond bijectively to the zeroes of $f$. Then we get
$$ \vert \textrm{Hom}_{k}(L, \overline{k}) \vert = \vert \{\textrm{zeroes of f in }\overline{k} \}\vert \leqslant \deg(f) = [L:k].$$
Now consider the general case. Let $L=k[\alpha_1, \dots \alpha_n]$ and $L'=k[\alpha_1, \dots \alpha_{n-1}] \subseteq L= L'[\alpha_n]$.\\
By induction on $n$ we have $\vert \textrm{Hom}_{k}(L', \overline{k}) \leqslant [L':k]$.
Let now $$f=\sum_{i=0}^d a_i X^{i} \in L'[X]$$ with coefficients $a_i \in L'$ be the minimal polynomial of $\alpha_n$ over $L'$. Let $\sigma \in \textrm{Hom}_{k}(L, \overline{k})$ and $\sigma'=\sigma |_{L'} \in \textrm{Hom}_{k}(L', \overline{k})$, $f^{\sigma'}:= \sum_{i=0}^d \sigma'(a_i) X^{i}$. Then
$$f^{\sigma'}\left(\sigma(\alpha_n)\right)=\sum_{i=0}^d \sigma'(a_i) \left(\sigma(\alpha_n)\right)^{i}=\sum_{i=0}^d \sigma(a_i) \left(\sigma(\alpha_n)\right)^{i} = \sigma \left(\sum_{i=0}^d a_i \alpha_n^{i}\right)=0.$$
Thus
$$ \vert \{\textrm{Hom}_{L'}(L, \overline{k}) \}\vert=\vert \{\sigma \in \textrm{Hom}_{k}(L, \overline{k}) \big \vert \sigma |_{L'}=\textrm{id}_{L'}\} \vert \leqslant \deg(f^{\sigma'}) = \deg (f) = [L':L]$$
So all in all we have
$$\vert \textrm{Hom}_{k}(L, \overline{k}) \vert \leqslant \vert \textrm{Hom}_{k}(L', \overline{k}) \vert \cdot [L:L'] \leqslant [L:L'] \cdot [L':k]=[L:k],$$
which is exactly the assignment. $\hfill \Box$
\end{pr}
\end{definprop}
\begin{defin} %Definition 2.10
Let $k$ be a field, $f=\sum_{i=0}^d a_i X^{i} \in k[X]$, $\overline{k}$ an algebraic closure of $k$, $L/k$ an algebraic field extension.
\begin{compactenum}
\item $f$ is called \textit{separable} over $k$, if $f$ has $\deg(f)$ different roots in $\overline{k}$, i.e. there are no multiple roots.
\item $\alpha \in L$ is called \textit{separable} over $k$, if the minimal polynomial of $\alpha$ over $k$ is separable.
\item $L/k$ is called \textit{separable}, if any $\alpha \in L$ is separable over $k$.
\item We define the \textit{formal derivative} of $f$ by $$f':=\sum_{i=1}^d i \cdot a_iX^{i-1}$$We have well known properties of the derivative:
$$(f+g)'=f'+g', \qquad1'=0, \qquad (f\cdot g)'=f\cdot g'+f'\cdot g.$$
\end{compactenum}
\end{defin}
\begin{proposition} %Proposition 2.11
Let $$f=\prod_{i=1}^n (X-\alpha_i) \in k[X], \qquad a_i \in \overline{k}\textrm{ for }1 \leqslant i\leqslant n$$
Then the following statements are equivalent:
\begin{compactenum}
\item $f$ is separable.
\item $(X-\alpha_i) \nmid f'$ for $1 \leqslant i \leqslant n$.
\item $\gcd(f,f')=1$ in $k[X]$.
\end{compactenum}
\begin{pr}
\begin{compactitem}
\item['(i) $\Leftrightarrow$ (ii)'] We have $$f'=\sum_{i=1}^n \prod_{j\neq i} (X-\alpha_j),$$thus we get
$$(X-\alpha_i) \mid f' \Leftrightarrow (X-\alpha_i) \mid \prod_{j\neq i} (X-\alpha_j) \Leftrightarrow \alpha_i = \alpha_j\textrm{ for some }i\neq j.$$
\item['(ii) $\Rightarrow$ (iii)'] Assume $(X-\alpha_i) \nmid f'$ for all $1\leqslant i \leqslant n$. Then $$\gcd(f,f')=1 \textrm{ in }\overline{k}[X] \Longrightarrow \gcd(f,f')=1 \textrm{ in }k[X].$$
\item['(iii) $\Rightarrow$ (ii)'] Let now $\gcd(f,f')=1$ in $k[X]$. Then we can write $$1=af+bf', \textrm{ }a,b \in k[X].$$Since again $k[X] \subseteq \overline{k}[X]$, we can write $1=af+bf'$ for $a,b \in \overline{k}[X]$ an hence we obtain $\gcd(f,f')=1$ in $\overline{k}[X]$. This implies $$(X-\alpha_i) \nmid f' \textrm{ for all }1 \leqslant i \leqslant n,$$
which was to be shown. $\hfill \Box$
\end{compactitem}
\end{pr}
\end{proposition}
\begin{corollary} % Corollary 2.12
\begin{compactenum}
\item An irreducible polynomial $f \in k[X]$ is separable if and only if $f' \neq 0$.
\item Any algebraic field extension in characteristic $0$ is separable.
\end{compactenum}
\end{corollary}
\begin{ex}
Let $\textrm{char}(k)=p>0$. Then $$X^p-1=(X-1)^p$$Let $k=\mathbb{F}_p(t)$ and $f=X^p-t \in \mathbb{F}_p(t)[X]$.
Then $f'=0$, hence $f$ is not separable, but $f$ is irreducible in $\mathbb{F}_p(t)[X]$.
\end{ex}
\begin{definprop} % Definition 2.13
Let $L/k$ be a finite field extension, $\overline{k}$ an algebraic closure of $k$ and $L$.
\begin{compactenum}
\item $[L:k]_s:= \vert \rm{Hom}_{k}(L, \overline{k}) \vert$ is called the \textit{degree of separability} of $L/k$.
\item If $L=k[\alpha]$ for some separable $\alpha \in L$ with minimal polynomial $m_{\alpha}$ over $k$, then
$$[L:k]_s=\deg(m_{\alpha})=[L:k].$$
\item If $L=k[\alpha]$ for some $\alpha \in L$, $\textrm{char}(k)=p>0$, then there exists $n \geqslant 0$, such that
$$[L:k] = p^n \cdot [L:k]_s$$
\item If $k \subseteq \mathbb{F} \subseteq L$ is an intermediate field extension, then
$$[L:k]_s=[L:\mathbb{F}]_s \cdot [\mathbb{F}:k]_s$$
\end{compactenum}
\begin{pr}
\begin{compactenum}
\item[(i)] This follows from Propoition 2.6:
$$[L:k]_s=\vert \textrm{Hom}_{k}(L, \overline{k}) \vert = \vert \{ \textrm{ different zeroes of } f \} \vert =n = [L:k].$$
\item[(iii)] Write
$$f=\sum_{i=0}^n a_iX{i}.$$
If $\alpha$ is separable over $k$, we are done with part (ii). Otherwise by Corollary 2.11 we have
$$f'=\sum_{i=1}^n i \cdot a_i \cdot X^{i-1}\overset{!}{=} 0 \ \Longleftrightarrow \ i \cdot a_i \equiv 0 \mod p \ \textrm{ for all } 0 \leqslant i \leqslant n $$
Thus we can write $f=g(X^p)$ for some $g \in k[X]$.
Continue this way until we can write $f=g(X^{p^n})$ for some $n \in \mathbb{N}_0$ and separable $g$. Then
$$[k[\alpha]:k]_s=\vert \{ \textrm{ zeroes of }g \textrm{ in } \overline{k} \} \vert =\deg(g)$$
and thus we obtain
$$[k[\alpha]:k]=\deg(f)=\deg(g) \cdot p^n =p^n \cdot [k[\alpha]:k]_s.$$
\item[(iv)] Consider first the simple case $L=k(\alpha)$. Let
$$f=\sum_{i=0}^n a_i X^{i} \in\mathbb{F}[X]$$
be the minimal polynomial of $\alpha$ over $\mathbb{F}$. Let $\tau \in \textrm{Hom}_{k}(\mathbb{F}, \overline{k})$ and let
$$f^{\tau}=\sum_{i=0}^n \tau(a_i) X^{i}.$$
Given $\sigma \in \textrm{Hom}_{k}(L, \overline{k})$ with $\sigma |_{\mathbb{F}}=\tau$, notice that $\sigma(\alpha)$ is a zero of $f^{\tau}$. Moreover by Proposition 2.6, every zero $\beta$ of $f^{\tau}$ determines a unique $\sigma$ such that $\sigma(\alpha)=\beta$.
Thus we have
\begin{alignat*}{5}
\big\vert \{ \sigma \in \textrm{Hom}_{k}(L, \overline{k}) \ \mid\ \sigma|_{\mathbb{F}}=\tau \} \big \vert \ &=&& \ \big \vert \{ \beta \in \overline{k} \ \mid\ f^{\tau}(\beta)=0 \} \big\vert \\
&=&& \ \big\vert \{\beta \in \overline{k} \ \mid \ f(\beta)=0 \} \big\vert \overset{2.6}{=} [L:\mathbb{F}]_s.
\end{alignat*}
We conclude
\begin{alignat*}{5}
[L:k]_s \ &=&& \ \big\vert \textrm{Hom}_{k}(L, \overline{k}) \big\vert \ = \ \Bigg\vert \bigcup_{\tau \in \textrm{Hom}_{k}(\mathbb{F}, \overline{k})} \left\{ \sigma \in \textrm{Hom}_{k}(L, \overline{k}) \ \mid \ \sigma|_{\mathbb{F}}=\tau \right\} \Bigg\vert \\
&=&& \ \big\vert \left\{ \sigma \in \textrm{Hom}_{k}(L, \overline{k}) \ \mid \ \sigma|_{\mathbb{F}}=\tau \right\} \big\vert \cdot \big\vert \textrm{Hom}_{k}(\mathbb{F}, \overline{k}) \big\vert\\[6pt]
&=&& \ [L:\mathbb{F}]_s \cdot [\mathbb{F}:k]_s
\end{alignat*}
For the general case we can write $L=\mathbb{F}(\alpha_1, \ldots, \alpha_n)$. Define $L_i:=\mathbb{F}(\alpha_1, \ldots, \alpha_i)$, $L_0:=\mathbb{F}$ and $L_n=L$. Then $L_i / L_{i-1}$ is simple and by the special case above we get
\begin{alignat*}{5}
[L:k]_s \ &=&& \ [L_n:L_{n-1}]_s \cdot [L_{n-1}:k]_s \\
&\ \ \vdots&& \\
&=&& \ [L_n:L_{n-1}]_s \cdot \cdot \cdot [L_2:L_1]_s \cdot [L_1:L_0]_s \cdot [L_0:k]_s \\
&=&& \ [L_n:L_{n-1}]_s \cdot \cdot \cdot [L_2:L_1]_s \cdot [L_1:\mathbb{F}]_s \cdot [\mathbb{F}:k]_s \\
&=&& \ [L_n:L_{n-1}]_s \cdot \cdot \cdot [L_2:\mathbb{F}]_s \cdot [\mathbb{F}:k]_s \\
&\ \ \vdots&&\\
&=&& \ [L_n:\mathbb{F}]_s \cdot [\mathbb{F}:k]_s \\
&=&& \ [L:\mathbb{F}]_s \cdot [\mathbb{F}:k]_s,
\end{alignat*}
which implies the claim. $\hfill \Box$
\end{compactenum}
\end{pr}
\end{definprop}
\begin{proposition}% Proposition 2.13
A finite field extension $L/k$ is separable if and only if $[L:k]=[L:k]_s$.
\begin{pr}
\begin{compactitem}
\item['$\Rightarrow$'] Let $L=k[\alpha_1, \dots \alpha_n]$. Prove this by induction on $n$.
\begin{compactitem}
\item[\textbf{n=1}] This is proposition 12.2(ii)
\item[\textbf{n>1}] Let $L'=k[\alpha_1, \dots \alpha_{n-1}]$. Then by induction hypothesis $[L':k]_s=[L':k]$. Moreover $[L:L']_s=[L:L']$, since $L/L'$ is simple by $L=L'[\alpha_n]$. By proposition 12.2 (iv) we get
$$[L:k]_s=[L:L']_s \cdot [L':k]_s=[L:L'] \cdot [L'.k]=[L:k].$$
\end{compactitem}
\item['$\Leftarrow$'] Let $\alpha \in L$ and $f= m_{\alpha} \in k[X]$ its minimal polynomial. If $\chara(k)=0$, $f$ is separable, so $\alpha$ is separable by corollary 2.11. Let now $\textrm{char}(k)=p>0$.
By proposition 12.2 there exists $n \geqslant 0$ such that $$[k[\alpha]:k]=p^n \cdot [k[\alpha]:k]_s$$We find
$$
[L:k]\ =\ [L:k[\alpha]] \ \cdot\ [k[\alpha]:k] \ \geqslant \ [L:k[\alpha]]_s\ \cdot\ p^n \ [k[\alpha]:k]_s \ = \ p^n\ [L:k]_s = \ p^n \ [L:k],$$
Hence we must have $n=0$, i.e. $[k[\alpha]:k]=[k[\alpha]:k]_s$. Thus $\alpha$ is separable over $k$. $\hfill \Box$
\end{compactitem}
\end{pr}
\end{proposition}
%SECTION 3
\renewcommand*\thesection{§ \arabic{section}\quad}
\section{Galois extensions}
\renewcommand*\thesection{\arabic{section}}
\begin{defin} %Definition 3.1
A field extension $L/k$ is called \textit{normal}, if there is a subset $\mathcal{F} \subseteq k[X]$ such that $L$ is the smallest field which any $f \in \mathcal{F}$ splits over.
\end{defin}
\begin{remark} % Remark 3.2
Let $L/k$ be a normal field extension, $\overline{k}$ an algebraic closure of $k$. Then
$$\homs_{k}(L,\overline{k})=\aut_{k}(L).$$
\begin{pr}
\begin{compactitem}
\item['$\supseteq$'] Clear.
\item['$\subseteq$'] Let $L$ be the splitting field of $\mathcal{F}$. Let $$f=\sum_{i=0}^d a_i X^{i} \in \mathcal{F}$$ and $\alpha \in L$ such that $f(\alpha)=0$. Let $\sigma \in \rm{Hom}_{k}(L, \overline{k})$. Then
$$f\left(\sigma(\alpha)\right)=\sum_{i=0}^d a_i \sigma(\alpha)^{i} = \sum_{i=0}^d \sigma(a_i) \sigma(\alpha)^{i} = \sigma\left(\sum_{i=0}^d a_i \alpha^{i}\right)= \sigma \left(f(\alpha)\right)=0,$$hence $\sigma(\alpha)$ is zero of $f$. Since $f$ splits over $L$, i.e. all zeroes of $f$ are in $L$, we have $\sigma(\alpha) \in L$. Moreover $L$ is generated over $k$ by the zeroes of $f \in \mathcal{F}$, thus $\sigma(L)\subseteq L$ and hence we get $\sigma \in \homs_{k}(L,L)$.\\
It remains to show bijectivity. $\sigma$ is clearly injective. For the surjectivity consider that $\sigma$ permutes all the zeroes of any $f \in \mathcal{F}$. Finally $\sigma \in \aut_{k}(L)$. $\hfill \Box$
\end{compactitem}
\end{pr}
\end{remark}
\begin{defin} % Definition 3.3
An algebraic field extension $L/k$ is called \textit{Galois extension} or \textit{Galois}, if it is normal and separable. In this case, the \textit{Galois group} of $L/k$ is defined as
$$\gal(L,k):=\aut_{k}(L).$$
\end{defin}
\begin{proposition} %Proposition 3.4
A finite field extension $L/k$ is Galois if and only if $\vert \aut_{k}(L) \vert=[L:k]$.
\begin{pr}
\begin{compactitem}
\item['$\Rightarrow$'] We have
$$ \vert \aut_{k}(L) \vert = \vert \homs_{k}(L, \overline{k}) \vert = [L:k]_s=[L:k]$$
\item['$\Leftarrow$'] We have to show that $L/k$ is separable and normal. First we see
$$[L:k]= \vert \rm{Aut}_{k}(L) \vert \leqslant \vert \homs_{k}(L, \overline{k}) \vert = [L:k]_s \leqslant [L:k]$$
Hence we have equality on each inequality, i.e. $[L:k]=[L:k]_s$ and $L/k$ is separable.\\
By Theorem 2.5 we know that $L/k$ is simple, say $L=k[\alpha]$ for some $\alpha \in L$.\\Let $m_{\alpha} \in k[X]$ be the minimal polynomial of $\alpha$ over $k$. Moreover let $\beta \in \overline{k}$ be another zero of $m_{\alpha}$. Then there exists $\sigma \in \homs_{k}(L, \overline{k})$ such that $\sigma(\alpha)=\beta$. By the (in-)equality above we know $\rm{Aut}_{k}(L)=\homs_{k}(L, \overline{k})$, hence $\sigma(\beta) \in L$. Since $\beta$ was arbitrary, $m_{\alpha}$, $f$ splits over $L$, i.e. $L$ is the splitting field of $f$ over $k$. Thus $L/k$ is normal and finally Galois. $\hfill \Box$
\end{compactitem}
\end{pr}
\end{proposition}
\begin{ex} %%Example 3.5
All quadratic field extensions are normal. Moreover, if $\chara(k) \neq$ $2$, then all quadratic field extensions of $k$ are Galois. \end{ex}
\begin{remark} % Remark 3.6
Let $L/k$ be a Galois extension and $k\subseteq K \subseteq L$ an intermediate field.
\begin{compactenum}
\item Then $L/K$ is Galois and $$\gal(L/K) \leqslant \gal(L/k)$$
\item If $K/k$ is Galois, then $\gal(L/K) \trianglelefteqslant \gal(L/k)$ is a normal subgroup and
$$\slant{\gal(L/k)}{\gal(L/K)} \cong \gal(K/k).$$
\end{compactenum}
\begin{pr}
\begin{compactenum}
\item Clearly $L/K$ is normal, since $L$ is the splitting field for the same polynomials as in $L/k$.
Let now $\alpha \in L$. Then the minimal polynomial $m_{\alpha}$ of $\alpha$ over $K$ divides the minimal polynomial $m_{\alpha}'$ of $\alpha$ over $k$, since $k \subseteq K$. Since $m_{\alpha}'$ has no multiple roots, $m_{\alpha}$ does not either and hence $L/K$ is separable and thus Galois.
\item Define
$$\rho: \gal(L/k) \longrightarrow \gal(K/k), \textrm{ }\sigma \mapsto \sigma |_{K}.$$
$\rho$ is well defined since $\sigma |_{K} \in \homs_K{k}(K, \overline{k})=\rm{Aut}_{k}(K)=\gal(K/k)$ as $K/k$ is Galois:
$$ [K:k] = \vert \aut_{k}(K) \vert \leqslant \vert \homs_{k}(K, \overline{k}) \vert \leqslant [K:k].$$
Moreover $\rho$ is surjective. For the kernel we get
$$\ker(\rho)=\{\sigma \in \gal(L/k) \mid \sigma |_{K} = \textrm{id}_{K} \} = \gal(L/K)$$
and thus we obtain $\slant{\gal(L/k)}{\gal(L/K)} \cong \gal(K/k)$. $\hfill \Box$
\end{compactenum}
\end{pr}
\end{remark}
\begin{theorem}[\rm \it Main theorem of galois theory] %%Theorem 3.7
Let $L/k$ be a finite Galois extension and $G:=\gal(L/k)$. Then the subgroups $H\leqslant G$ correspond bijectively to the intermediate fields $k \subseteq K \subseteq L$. Explicitly we have inverse maps
$$ K \mapsto \gal(L/K) \leqslant G$$
$$ H \mapsto L^H := \{ \alpha \in L \mid \sigma(\alpha) =\alpha \textrm{ for all } \sigma \in H \}.$$
\begin{pr}
Clearly $L^H$ is a field for any $H \leqslant G$. We now have to show
\begin{compactenum}
\item $\gal(L/L^H) = H$ for any $H \leqslant G$.
\item $L^{\gal(L/K)} = K$ for any intermediate field $k \subseteq K \subseteq L$.
\end{compactenum}
Theese prove the theorem.
\begin{compactenum}
\item We show both inclusion.
\begin{compactitem}
\item['$\supseteq$'] Clear by definition.
\item['$\subseteq$'] It suffices to show $\vert \gal(L/L^H) \vert \leqslant \vert H \vert$.
By 3.4(i) we have $$\vert \gal(L/L^H) \vert = [L:L^H].$$By theorem 2.5 $L/L^H$ is simple, say $L=L^H[\alpha]$. Define $$f=\prod_{\sigma \in H} (X-\sigma(\alpha))$$ with $\deg(f)=\vert H \vert$. Further, since $\textrm{id} \in H$, we have $f(\alpha)=0$. Clearly $f \in L[X]$. We want to show that $f \in L^H[X]$. Therefore for $\tau \in H$ define $$g^{\tau}:=\sum_{i=0}^n \tau(a_i) X^{i} \textrm{ for }g=\sum_{i=0}^n a_i X^{i}$$Then for $f$ as defined above we have
$$f^{\tau}=\prod_{\sigma \in H} \left(X- \tau\left(\sigma(\alpha)\right)\right)=\prod_{\sigma \in H} \left(X- \sigma(\alpha)\right)=f$$
hence $f \in L^H[X]$. From $f(\alpha)=0$ we know that the minimal polynomial $m_{\alpha}$ of $\alpha$ over $L^H$ divides $f$, thus
$$ \vert \gal(L/L^H) \vert = [L:L^H] = \deg(m_{\alpha}) \leqslant \deg(f)= \vert H \vert $$
\end{compactitem}
\item
\begin{compactitem}
\item['$\supseteq$'] Clear by definition.
\item['$\subseteq$'] Let $H:= \gal(L/K)$. Since $K \subseteq L^H$ it suffices to show $[L^{H}:K]=1$. Since $L^{H}/K$ is separable, this is equivalent to $[L^H:K]_s=1$.
Let now $\sigma \in \textrm{Hom}_{K}(L^H, \overline{k})$. By 2.6 we can extend $\sigma$ to $$\tilde{\sigma}: L \longrightarrow \overline{k}$$ with $\tilde{\sigma}|_{L^H}=\sigma$. Explicitly: Let $L=L^H[\alpha]$ and $f \in L^H[X]$ its minimal polynomial. Choose a zero $\beta \in \overline{k}$ of $f^{\sigma}$. Then by 2.6 there exists $\tilde{\sigma}: L \longrightarrow \overline{k}$ with $\tilde{\sigma}(\alpha)=\beta$ and $\tilde{\sigma}|_{L^H} = \sigma$.
We get $\tilde{\sigma} \in \gal(L/K)=H$ and $\sigma=\tilde{\sigma}|_{L^H}=\textrm{id}_{K}$ which finally implies $[L^H:K]=1$. $\hfill \Box$
\end{compactitem}
\end{compactenum}
\end{pr}
\end{theorem}
\begin{remark} %Remark 3.8
An intermediate field $k \subseteq K \subseteq L$ is Galois over $k$ if and only if $\gal(L/K) \trianglelefteqslant \gal(L/k)$ is a normal subgroup.
\begin{pr}
\begin{compactenum}
\item['$\Rightarrow$'] If $K/k$ is Galois, then $\gal(L/K)=\ker(\rho)$ is a normal subgroup by 3.5.
\item['$\Leftarrow$'] Conversely let $\gal(L/K)=:H \trianglelefteqslant \gal(L/k)$ be a normal subgroup. By 3.4 it suffices to show $\rm{Hom}_{k}(K, \overline{k})=\rm{Aut}_{k}(K)$. Let now $\sigma \in \rm{Hom}_{k}(K, \overline{k})$ and $\alpha \in K$. Extend $\sigma$ to $\tilde{\sigma}:L \longrightarrow \overline{k}$. Then $\tilde{\sigma} \in \gal(L/k)$. By the theorem it suffices to show that $\sigma(\alpha) \in L^{\gal(L/K)}=K$, i.e. $\sigma(K) \subseteq K$. Let $\tau \in \gal(L/L^H)$. Then, since $\gal(L/K)$ is normal, we obtain $$ \tau\left(\sigma(\alpha)\right)= \tau\left(\tilde{\sigma}(\alpha)\right)=\left(\tilde{\sigma} \circ \tau'\right)(\alpha)= \tilde{\sigma}(\alpha)=\sigma(\alpha),$$
which implies the claim. $\hfill \Box$
\end{compactenum}
\end{pr}
\end{remark}
\begin{ex} %Example 3.9
Let $k=\mathbb{Q}$, $f= X^5-4X+2 \in \mathbb{Q}[X]$. Further let $L=L(f)$ be the splitting field of $f$ over $\mathbb{Q}$. What is $\gal(L/\mathbb{Q})$?.\\
We first want to show that $f$ is irreducible. But this immediately follows by By Eisenstein's criterion for irreducibility with $p=2$.\\
Thus $L$ is an extension of $\slant{\mathbb{Q}}{( f )}$. Therefore $[L:\mathbb{Q}]$ is multiple of $[\slant{\mathbb{Q}}{( f )}]=5$, hence $\vert \gal(L/\mathbb{Q}) \vert$ is divisible by $5$. By Lagrange's theorem we know that $\gal(L/\mathbb{Q})$ contains an element of order $5$.\\
Further note that $f$ has exactly $3$ zeroes in $\mathbb{R}$.
With $$\lim_{x \to \infty} f(x)=- \infty <0, \quad \textrm{ }f(0)=2>0, \quad \textrm{ }f(1)=-1<0, \quad \textrm{ }\lim_{x \to - \infty} f(x)= \infty >0$$ we see by the intermediate value theorem that $f$ has at least $3$ zeroes.
Moreover $$f'=5X^4-4=5\cdot \left(X^4-\frac{4}{5}\right)=5 \cdot \left(X^2- \frac{2}{\sqrt{5}}\right) \cdot \left(X^2+ \frac{2}{\sqrt{5}}\right)$$Obviously, since the second factor has not real zeroes, the derivative of $f$ has $2$ zeroes, hence $f$ has at most $3$ zeroes. Together we obtain that $f$ has exactly $3$ zeroes. Since $f$ splits over $\mathbb{C}$, $f$ has two more conjugate zeroes in $\mathbb{C}$, say $\beta, \overline{\beta}$. Hence we know that the conjugation in $\mathbb{C}$ must be an element of $\gal(L/\mathbb{Q})$.\\
To sum it up, we know: $\gal(L/\mathbb{Q})$ is isomorphic to a subgroup of $S_5$, contains the conjugation, which corresponds to a transposition and moreover an element of order $5$, i.e. a $5-cycle$. But these two elements generate the whole group $S_5$. Hence we have
$\gal(L/\mathbb{Q}) \cong S_5$.
\end{ex}
\begin{proposition}[\rm \it Cyclotomic fields] %%Proposition 3.10
Let $k$ be a field, $n \in \mathbb{N}$, $\chara(k) \nmid n$ and $L$ the splitting field of the polynomial $f=X^n-1$.\\
Then $L/k$ is Galois and $\gal(L_n/k)$ is isomorphic to a subgroup of $\left(\slant{\mathbb{Z}}{n \mathbb{Z}}\right)^{\times}$.
\begin{pr}
We have $f'=n X^{n-1}$ and $f'=0 \Leftrightarrow X=0$ but $f(0)\neq 0$, hence $f'$ and $f_n$ are coprime. Thus $f$ is separable. Since $L$ is the splitting field of $f$ by definition, $L/k$ is normal, thus Galois.\\
The zeroes of $f$ form a group $\mu_n(k)$ under multiplication. By proposition 2.3 $\mu_n(k)$ is cyclic. Let $\zeta_n$ be a generator of $\mu_n(k)$. Define a map
$$ \chi_n: \gal(L_n/k) \longrightarrow \left(\slant{\mathbb{Z}}{n \mathbb{Z}}\right)^{\times}\textrm{ }\sigma \mapsto m\textrm{ if }\sigma(\zeta_n)=\zeta_n^m$$
where $m$ is relatively coprime to $n$. We obtain that $\chi_n$ is a homomorphism of groups since for $\sigma_1. \sigma_2 \in \gal(L_n/k)$ we have $ \sigma_2 \sigma_1(\zeta_n)=\sigma_2 \left(\zeta_n^{k_1}\right)=\left(\zeta_n^{k_1}\right)^{k_2}=\zeta_n^{k_1 k_2}$
and hence
$$ \chi_n \left( \sigma_1 \sigma_2 \right)=k_1 \cdot k_2 = \chi_n(\sigma_1) \cdot \chi_n(\sigma_2).$$
Moreover $\chi_n$ is injective, since
\begin{center}$ \chi_n(\sigma)=1 \Leftrightarrow \sigma(\zeta_n)= \zeta_n \Leftrightarrow \sigma= \rm{id}.$\end{center}
This proofs the proposition. Recall that $\vert \left( \slant{\mathbb{Z}}{n \mathbb{Z}}\right)^{\times} \vert = \phi(n)$ Where $\phi$ is Euler's $\phi$-function. $\hfill \Box$
\end{pr}
\end{proposition}
%SECTION 4
\renewcommand*\thesection{§ \arabic{section}\quad}
\section{Solvability of equations by radicals}
\renewcommand*\thesection{\arabic{section}}
\begin{definbem} %Deinition + Remark 4.1
Let $k$ be a field, $f \in k[X]$ separable.
\begin{compactenum}
\item Let $L(f)$ be the splitting field of $f$ over $k$. The \textit{Galois group of the equation }$f=0$ is defined by
$$ \gal(f):=\gal(L(f)/k).$$
\item There exists an injective homomorphism of groups $\gal(f)\longrightarrow S_n$ where $n:= \deg(f)$.
\item If $L/k$ is a finite, separable field extension, the $\rm{Aut}_{k}(L)$ is isomorphic to a subgroup of $S_n$, where $n= [L:k]$.
\end{compactenum}
\begin{pr}
\begin{compactenum}
\item[(ii)] Clear, since automorphisms permute the zeroes of $f$, of which we have at most $n$.
\item[(iii)] We know $L/k$ is simple, say $L=k[\alpha]$ for some $\alpha \in L$. Let $m_{\alpha}$ be the minimal polynomial of $\alpha$ over $k$. Then $\deg(f)=n$. Every $\sigma \in \rm{Aut}(L/k)$ maps $\alpha$ to a zero of $f$ and the same for every zero of $f$. Hence the claim follows. $\hfill \Box$
\end{compactenum}
\end{pr}
\end{definbem}
\begin{defin} % Definition 4.2
\begin{compactenum}
\item A simple field extension $L=k[\alpha]$ of a field $k$ is called an \textit{elementary radical extension} if either
\begin{compactenum}
\item $\alpha$ is a root of unity, i.e. a zero of the polynomial $X^n-1$ for some $n \in \mathbb{N}$.
\item $\alpha$ is a root of $X^n- \gamma$ for some $\gamma \in k, n \in \mathbb{N}$ such that $\chara(k) \nmid n$.
\item $\alpha$ is a root of $X^p-X-\gamma$ for somme $\gamma \in k$ where $p=\chara(k)$.
\end{compactenum}
In the following, we will denote $(1), (2)$ and $(3)$ as the three \textit{types} of elementary radical extensions.
\item A finite field extension $L/k$ is called a \textit{radical extension}, if there is a field extension $L'/L$ and a chain of field extension
$$ k=L_0 \subseteq L_1 \subseteq \dots \subseteq L_m = L'$$
such that $L_i/L_{i-1}$ is an elementary radical extension for every $1 \leqslant i \leqslant m$.
\end{compactenum}
\end{defin}
\begin{ex} %Example 4.3
Let $k=\mathbb{Q}$, $f=X^3-3X+1$.
The zeroes of $f$ (in $\mathbb{C}$) are
$$ \alpha_1= \zeta + \zeta^{-1} \in \mathbb{R}, \textrm{ }\alpha_2=\zeta^2 + \zeta^{-2}\textrm{ and }\alpha_3=\zeta^4 + \zeta^{-4}$$
where $\zeta = e^{\frac{2\pi i}{9}}$ is a primitive ninth root of unity. We show this exemplarily for $\alpha_1$. We have
$$f(\alpha_1)\ =\ \left(\alpha_1^3-3 \alpha_1+1\right)\ =\ \zeta^3+ 3\zeta + 3\zeta^{-1}+\zeta^{-3} -3 \zeta - 3\zeta^{-1}+1\ =\ \zeta^3+ \zeta{-3}+1\ =\ 0$$
where we use $\zeta^{-3}= \overline{\zeta^{-3}}$ and since $z+\overline{z}=2 \cdot \mathfrak{Re}(z)$ for any $z \in \mathbb{C}$ we have
$$\zeta^3+ \zeta^{-3}\ =\ 2 \cdot \mathfrak{Re}\left(\zeta^3\right)\ =\ 2 \cdot \mathfrak{Re} \left(e^{\frac{2 \pi i}{3}}\right)\ =\ 2 \cdot \mathfrak{Re} \left(\cos\frac{2 \pi}{3} + i \cdot \sin \frac{2 \pi}{3}\right)\
=\ 2 \cdot \cos\frac{2 \pi}{3} \ =\ 2 \cdot \left(- \frac{1}{2}\right)\ =\ -1.$$
Further we have $$\alpha_1^2=\zeta^2 + 2 \zeta^{-2}+2=\alpha_2+2,$$hence $\alpha_2 \in \mathbb{Q}(\alpha_1)$ and $\alpha_1 + \alpha_2 + \alpha_3 =0$, hence $\alpha_3 \in \mathbb{Q}(\alpha_1, \alpha_2) = \mathbb{Q}(\alpha_1)$.\\
This means that $\mathbb{Q}(\alpha_1)$ contains all the zeroes of $f$, i.e. is a splitting field of $f$.
We conclude $$\mathbb{Q}(\alpha_1) \cong \slant{\mathbb{Q}}{( f )}, \qquad [\mathbb{Q}(\alpha_1):\mathbb{Q}]=3.$$
From the $f$ we see that $\mathbb{Q}(\alpha_1)/\mathbb{Q}$ is not an elementary radical extension, but a radical extension, since for $\mathbb{Q}(\zeta)$ we have $\mathbb{Q}(\alpha_1) \subseteq \mathbb{Q}(\zeta)$ and $\mathbb{Q}(\zeta)/\mathbb{Q}$ is an elementary radical extension.
\end{ex}
\begin{defin} %Definition 4.4
Let $k$ be afield, $f \in k[X]$ a separable, non-constant polynomial. We say \textit{f is solvable by radicals}, if the splitting field $L(f)$ is a radical extension. \end{defin}
\begin{remark} %Remark 4.5
Let $L/k$ be an elementary field extension, referring to Definition 4.1 of type
\begin{compactenum}
\item[\rm(1)] $L=k[\zeta]$ for some root of unity $\zeta$ (primitive for some suitable $n \in \mathbb{N}, \textrm{char}(k) \nmid n$). Then $L/k$ is Galois with abelian Galois group $$\gal(L/k) \cong \left(\slant{\mathbb{Z}}{n \mathbb{Z}}\right)^{\times}.$$
\item[\rm(2)] $L=k[\alpha]$ where $\alpha$ is a root of $X^n-\gamma$ for some $\gamma \in k, n \in \mathbb{N}, \chara(k) \nmid n$. If $k$ contains the $n$-th roots of unity, i.e. $\mu_n(\overline{k})$, then $L/k$ is Galois with cyclic Galois group.
\item[\rm(3)] $L=k[\alpha]$, where $\alpha$ is a root of $X^p-X-\gamma$ for some $\gamma \in k^{\times}$. Then $L/k$ is Galois with Galois group $$\gal(L/k) \cong \slant{\mathbb{Z}}{p \mathbb{Z}}.$$
\end{compactenum}
\begin{pr}
\begin{compactenum}
\item[(1)] We proved this in proposition 3.9.
\item[(2)] Let $\zeta \in k$ be a primitive $n$-th root of unity. Then $\zeta^{i} \cdot \alpha$ is a zero of $X^n-\gamma$, where we assume $n$ to be minimal sucht that $X^n-\gamma$ is irreducible. Then $L$ contains all roots of $X^n-\gamma$, i.e. $L/k$ is normal and thus Galois with $$ \vert \gal(L/k) \vert = [L:k]=\textrm{deg}(X^n-\gamma)=n$$ Since the automorphism $\sigma \in \gal(L/k)$ that maps $\alpha \mapsto \zeta \cdot \alpha$ has order $n$, $\gal(L/k)$ is cyclic.
\item[(3)] $f=X^p-X-\gamma$ has $p$ zeroes in $L=k[\alpha]$. Since
$f(\alpha)=0$, we have $$f(\alpha+1)=\left(\alpha+1\right)^p-\left(\alpha+1\right)-\gamma=\alpha^p+1-\alpha-1-\gamma=\alpha^p-\alpha-\gamma =f(\alpha)=0$$
Hence $L$ is the splitting field of $f$ and $L/k$ is normal. Moreover $f'=-1 \neq 0$, hence $L/k$ is separable and thus Galois with $$\vert \gal(L/k) \vert = [L:k]=\deg(f)=p$$
Further $\gal(L/k)\ni \sigma: \ \alpha \mapsto \alpha +1$ has order $p$, hence $\gal(L/k)$ is cyclic and thus $$\gal(L/k) \cong \slant{\mathbb{Z}}{p \mathbb{Z}},$$
which is the claim. $\hfill \Box$
\end{compactenum}
\end{pr}
\end{remark}
\begin{remark} %Remark 4.6
Let $L/k$ be an elementary radical extension of type (ii), i.e. $L=k[\alpha]$, where $\alpha$ is the root of $f=X^n-\gamma$ for some $\gamma \in k, n \geqslant 1, \chara(k) \nmid n$. $X^n-\gamma$ is irreducible\\
Let $\mathbb{F}$ be a splitting field of $X^n-1$ over $k$ and $L\mathbb{F}=k(\alpha, \zeta)$ be the \textit{compositum} of $L$ and $\mathbb{F}$, i.e. the smallest subfield of $\overline{k}$ containing $L$ and $\mathbb{F}$.
$$\begin{xy}
\xymatrix{
&\tilde{L}=L\mathbb{F} &\\
L=k[\alpha] \ar@{-}[ru] && k[\zeta]=\mathbb{F} \ar@{-}[lu] \\
& k \ar@{-}[lu] \ar@{-}[ru]&
}
\end{xy}$$
$\tilde{L}$ is a splitting field of $X^n-\gamma$ over $\mathbb{F}$, hence $\tilde{L}/\mathbb{F}$ is Galois and by 4.4(ii), $\gal(\tilde{L}/\mathbb{F})$ is cyclic.\\
Moreover $\mathbb{F}/k$ is Galois and $\gal(\mathbb{F}/k)$ is abelian. Hence $\tilde{L}/k$ is Galois and\\$$\slant{\gal(\tilde{L}/k)}{\gal(\tilde{L}/\mathbb{F})} \cong \gal(\mathbb{F}/k)$$
i.e. we have a short exact sequence
$$1 \longrightarrow \underbrace{\gal(\tilde{L}/\mathbb{F})}_{\textit{cyclic}} \overset{\textrm{inj.}}{\longrightarrow} \gal(\tilde{L}/k) \overset{\textrm{surj.}}{\longrightarrow} \underbrace{\gal(\mathbb{F}/k)}_{\textit{abelian}} \longrightarrow 1.$$
\end{remark}
\begin{ex} %%Example 4.7
Let $k=\mathbb{Q}$, $f=X^3-2$. Then $L=\mathbb{Q}[\alpha]$ with $\alpha=\sqrt[3]{2}$ and $\mathbb{F}=\mathbb{Q}[\zeta]$ with $\zeta=e^{\frac{2\pi}{3}}$.\\
Then $\tilde{L}=L(f)$ with $[\tilde{L}:\mathbb{Q}]=6$. We obtain $$\gal(\tilde{L}/\mathbb{F}) \cong \slant{\mathbb{Z}}{3 \mathbb{Z}}, \textrm{ } \gal(\mathbb{F}/k) \cong \slant{\mathbb{Z}}{2 \mathbb{Z}}, \textrm{ } \gal(\tilde{L}/\mathbb{Q}) \cong S_3.$$
\end{ex}
\begin{defin} %Definition 4.8
A group $G$ is called \textit{solvable}, if there exists a chain of subgroups $$1\ =\ G_0 \ \triangleleft G_1\ \triangleleft \ \dots\ \triangleleft \ G_n=G$$ where $G_{i-1} \triangleleft G_i$ is a normal subgroup and $\slant{G_i}{G_{i-1}}$ is abelian for all $1 \leqslant i \leqslant n$.
\end{defin}
\begin{ex} %%Example 4.9
\begin{compactenum}
\item Every abelian group is solvable.
\item $S_4$ is solvable by $$1 \ \triangleleft\ V_4 \ \triangleleft \ A_4 \ \triangleleft\ S_4$$ where $V_4=\{\rm{id}, (12)(34), (13)(24), (14)(23)\}$. For the quotients we have $$\slant{V_4}{\{1\}} \cong \slant{\mathbb{Z}}{2 \mathbb{Z}} \times \slant{\mathbb{Z}}{2 \mathbb{Z}}, \qquad \slant{A_4}{V_4}\cong \slant{\mathbb{Z}}{3 \mathbb{Z}}, \qquad \slant{S_4}{A_4} \cong \slant{\mathbb{Z}}{2 \mathbb{Z}}.$$
\item $S_5$ is not solvable, since $A_5$ is simple (EAZ 6.6) but the quotient $\slant{A_5}{\{1\}}$ is not abelian.
\item If $G$, $H$ are solvable groups, then the direct product $G \times H$ is solvable.
\end{compactenum}
\end{ex}
\begin{proposition} % Proposition 4.10
\begin{compactenum}
\item Let $G$ be a solvable group. Then
\begin{compactenum}
\item Every subgroup $H \leqslant G$ is solvable.
\item Every homomorphic image of $G$ is solvable.
\end{compactenum}
\item Let $$1 \longrightarrow G' \longrightarrow G \longrightarrow G'' \longrightarrow 1$$be a short exact sequence. Then $G$ is solvable if and only if $G'$ and $G''$ are solvable.
\end{compactenum}
\begin{pr}
\begin{compactenum}
\item \begin{compactenum}
\item Let $G$ be solvable, i.e. we have a chain $1=G_0 \triangleleft G_1 \triangleleft \dots \triangleleft G_n=G$. Let $G' \leqslant G$ a subgroup. Then $$1 \ \triangleleft \ G_1 \cap G' \ \triangleleft \ \dots\ \triangleleft \ G_n \cap G' \ = \ G'$$ is a chain of subgroups of $G'$ and we have $G_i \cap G' \triangleleft G_{i+1} \cap G'$ and moreover $$\slant{\left(G_{i+1} \cap G'\right)}{\left(G_{i} \cap G'\right)} \cong G_i \slant{\left(G_{i+1} \cap G'\right)}{G_i} \leqslant \slant{G_{i+1}}{G_i}.$$
Hence we have abelian quotients and $G'$ is solvable.
\item Let $H$ be a group and $\phi: G \longrightarrow H$ be a surjective homomorphism of groups. Let $$1 \ \triangleleft \ G_1 \ \triangleleft \ \dots\ \triangleleft \ G_n\ =\ G.$$ Let $H_i:=\phi(G_i)$. Then $H_i$ is normal in $H_{i+1}$. It remains to show that the quotients are abelian. Consider
$$\begin{xy}
\xymatrix{
G_i \ar[dd]_{\phi} \ar[rr] && G_{i+1} \ar[dd]_{\phi} \ar[rr]^{\pi_G} \ar@{-->}[rrdd]_{\tilde{\phi}} && \slant{G_{i+1}}{G_i} \ar[dd]^{\overline{\phi}} \\ &&&& \\
H_i \ar[rr] && H_{i+1} \ar[rr]_{\pi_H} && \slant{H_{i+1}}{H_i}
}
\end{xy}$$
(We have $G_i \subseteq \ker(\tilde{\phi})$, since $\phi(G_i)=H_i=\ker(\pi_H)$.
Hence $\tilde{\phi}$ factors to $$\overline{\phi}: \underbrace{\slant{G_{i+1}}{G_i}}_{\textit{abelian}} \underbrace{\longrightarrow}_{\Rightarrow} \underbrace{\slant{H_{i+1}}{H_i}}_{\textit{abelian!}}$$
and we get $\overline{\phi}(a) \overline{\phi}(b)=\overline{\phi}(ab)=\overline{\phi}(ba)=\overline{\phi}(b) \overline{\phi}(a)$, hence the quotient is abelian and $H=\phi(G)$ is solvable.
\end{compactenum}
\item \begin{compactitem}
\item['$\Rightarrow$'] Clear.
\item['$\Leftarrow$'] Let $$1 \triangleleft G_1 \triangleleft \dots \triangleleft G_m =G', \qquad 1 \triangleleft H_{m+1} \triangleleft \dots \triangleleft H_{m+k}=G''$$ chains of subgroups with abelian quotients. Define $$G_i:= \pi^{-1} \left(H_i\right)_{m+1 \leqslant i \leqslant m+k}, \textrm{ } \pi:G \longrightarrow G''.$$
Then $G_i$ is normal in $G_{i+1}$ and we have
\noindent
$$G_{m+0}=\pi^{-1}(\{1\})=G'=G_m.$$
\noindent
For $m+1 \leqslant i \leqslant m+k$ we have $$\slant{G_{i+1}}{G_i} = \pi^{-1}\left(\slant{H_{i+1}}{H_i}\right) \cong \slant{H_{i+1}}{H_i}$$ and hence the chain $$1 \triangleleft G_1 \triangleleft \dots \triangleleft G_m=G' \triangleleft G_{m+1} \triangleleft \dots \triangleleft G_{m+k}=G$$ reveals the solvability of $G$. $\hfill \Box$
\end{compactitem}
\end{compactenum}
\end{pr}
\end{proposition}
\begin{lemma}%Lemma 4.11
A finite separable field extension $L/k$ is a radical extension if and only if there exists a finite Galois extension $L'/k$, $L \subseteq L'$ such that $\gal(L'/k)$ is solvable.
\begin{pr}
\begin{compactitem}
\item['$\Rightarrow$'] Let $$k=k_0=L_0 \subseteq L_1 \subseteq \dots \subseteq L_n$$ a chain as in definition 4.7 with $L \subseteq L_n$. we prove the statement by induction.
\begin{compactitem}
\item[\bf{n=1}] This is exactly remark 4.5, 4.6
\item[\bf{n>1}] By induction hypothesis $L_{n-1}/k$ is solvable. Moreover $L_n/L_{n-1}$ is solvable, too. This is equivalent to the fact, that
$L_{n-1}$ is contained in a Galois extension $\tilde{L}_{n-1}/k$ such that $\gal(\tilde{L}/k)$ is solvable and
$L_n$ is contained in a Galois extension $\tilde{L}/L_{n-1}$ such that $\gal(\tilde{L}/L_{n-1})$ is solvable.
We have a diagramm
\begin{center}
\begin{tabular}{*{7}{l}}
&& $\tilde{L}_{n-1}$ & $\subseteq$ &$ \tilde{L}L_{n-1}$ &$ := $& $\mathbb{M} $\\
&& \tabrotate{$\subseteq$} &&&& \tabrotate{$\subseteq$}\\
$k$ & $\subseteq$ &$ L_{n-1} $&$ \subseteq$ &$ L_n $&$ \subseteq $& $\tilde{L} $\\
\end{tabular}\\
\end{center}
We obtain, that $\mathbb{M}$ is Galois over $L_{n-1}$, since $\tilde{L}, \tilde{L}_{n-1}$ are Galois over $L_{n-1}$, hence by
$$\iota: \gal(\mathbb{M}/\tilde{L}_{n-1}) \longrightarrow \gal(\tilde{L}/L_{n-1}), \textrm{ } \sigma \mapsto \sigma |_{\tilde{L}}$$ an injective homomorphism of groups is given, hence $$\gal(\mathbb{M}/\tilde{L}_{n-1}) \leqslant \gal(\tilde{L}/L_{n-1})$$ is solvable as a subgroup of a solvable group.\\
Let now $\tilde{\mathbb{M}}/\mathbb{M}$ be a minimal extension, such that $\tilde{\mathbb{M}}/k$ is Galois. Explicitly, $\tilde{\mathbb{M}}$ is defined as the \textit{normal hull} of $\mathbb{M}$, i.e. the splitting field of the minimal polynomial of a primitive element of $\mathbb{M}/k$.\\
Now we want to show that $\gal(\mathbb{M}/k$ is solvable.This finishes the proof of the sufficiency of our Lemma. Consider the short exact sequence $$1 \longrightarrow \gal(\tilde{\mathbb{M}}/\tilde{L}_{n-1}) \longrightarrow \gal(\mathbb{M}/k) \longrightarrow \gal(\tilde{L}_{n-1}/k) \longrightarrow \rm1.$$ By proposition 4.8 and our induction hypothesis it suffices to show that $\gal(\tilde{\mathbb{M}}/\tilde{L}_{n-1})$ is solvable. Therefore observe that $\tilde{\mathbb{M}}$ is generated over $k$ by the $\sigma(k)$ for $\sigma \in \rm{Hom}_{k}(\mathbb{M}, \overline{k})$, where $\overline{k}$ denotes an algebraic closure of $k$. For any $\sigma \in \rm{Hom}_{k}(\mathbb{M},\overline{k})$, $\sigma(\mathbb{M})/\sigma(L_{n-1})=\sigma(\mathbb{M})/\tilde{L}_{n-1}$ is Galois. Hence
$$\Phi: \gal(\tilde{\mathbb{M}}/\tilde{L}_{n-1}) \longrightarrow \prod_{\sigma \in \rm{Hom}_{k}(\mathbb{M}, \overline{k})} \gal\left(\sigma(\mathbb{M})/\tilde{L}_{n-1}\right), \textrm{ } \tau \mapsto \left(\tau |_{\sigma(\mathbb{M})}\right)_{\sigma}$$
is injective.
Hence $\gal(\tilde{\mathbb{M}}/\tilde{L}_{n-1})$ is solvable as a subgroup of a product of solvable groups.
\end{compactitem}
\item['$\Leftarrow$'] Let now $\tilde{L}/L$ finite such that $\gal(\tilde{L}/k)$ is solvable. Let
$$1 \triangleleft \ G_1\ \triangleleft\ \dots \ \triangleleft\ G_n \ =\ G$$ be a chain of subgroups as in definition 4.7. By the main theorem we have bijectively correspond intermediate fields
$$ \tilde{L}=L_n \supseteq L_{n-1} \supseteq \dots \supseteq L_0 = k$$
where $L_{i+1}/L_i$ is Galois and $\gal(L_{i+1}/L) \cong \slant{\mathbb{Z}}{p \mathbb{Z}}$ for all $1 \leqslant i \leqslant n-1$. We now have to differ between three cases.
\begin{compactitem}
\item[\textbf{case 1}] $p_i=\chara(k)$. Then $L_{i+1}/L_i$ is an elementary radical extension of type (iii), i.e. $L/k$ is a radical extension.
\item[\textbf{case 2}] $p_i \neq \chara(k)$ \textit{and} $L_{i}$ contains a primitive $p_i$-th root of unity. Then $L_{i+1}/L_i$ is an elementary radical extension of type (ii), i.e. $L/k$ is a radical extension.
\item[\textbf{case 3}] $p_i \neq \chara(k)$ \textit{and} $L_{i}$ does not contain any primitive $p_i$-th root of unity. Then define
$$d:=\prod_{p \in \mathbb{P}, p \mid \vert G \vert} p$$
And let $\mathbb{F}$ be the splitting field of $X^d-1$ over $k$. Then $\mathbb{F}/k$ is an elementary radical extension of type (i).
Let $L':=\tilde{L}\mathbb{F}$ be the composite of $\tilde{L}$ and $\mathbb{F}$ in $\overline{k}$. Then $L'/\mathbb{F}$ is Galois by remark 4.5. Let $G'=\gal(L'/\mathbb{F})$. Consider the map
$$\Psi: \gal(L'/\mathbb{F}) \longrightarrow \gal(\tilde{L}/k), \textrm{ } \sigma \mapsto \sigma |_{\tilde{L}}.$$
$\Psi$ is a well defined injective homomorphism of groups, hence $\gal(L'/\mathbb{F}) \leqslant \gal(\tilde{L}/k)$ is solvable as a subgroup of a solvable group. Let
$$1 \triangleleft \ G_1\ \triangleleft\ \dots \ \triangleleft\ G_n \ =\ G'$$
a chain of subgroups as in definition 4.7. Let further be
$$k \subseteq \mathbb{F}=L_0 \subseteq L_1 \subseteq \dots \subseteq L_n=L'$$
be the corresponding chain of intermediate fields, i.e $L_{i}/L_{i-1}$ is Galois and $\gal(L_{i}/L_{i-1}) \cong \slant{\mathbb{Z}}{p \mathbb{Z}}$ for $1 \leqslant i \leqslant n$.
Hence, $L_{i}/L_{i-1}$ is a radical extension of type (ii).
Thus $L/k$ is a radical extension, which finishes the proof. $\hfill \Box$
\end{compactitem}
\end{compactitem}
\end{pr}
\end{lemma}
\begin{theorem}%Theorem 4.12
Let $f \in k[X]$ be a separable non-constant polynomial. Then $f$ is solvable by radicals if and only if $\gal(f)=\gal(L(f)/k)$ is solvable.
\begin{pr}
Let $f$ be solvable by radicals, i.e. $L(f)/k$ be a radical field extension.\\
$\Longleftrightarrow \ $ $L(f)$ is contained in some Galois extension $\tilde{L}/k$ and $\gal(\tilde{L}/k)$ is solvable.\\
$\Longleftrightarrow \ $ In $k\subseteq L(f) \subseteq \tilde{L}$ all extensions are Galois.\\
$\overset{3.5}{\Longleftrightarrow} \ \gal(L(f)/k) \cong \slant{\gal(\tilde{L}/k)}{\gal(\tilde{L}/L(f))}$\\
$\overset{4.8}{\Longleftrightarrow} \ \gal(L(f)/k)$ is solvable. $\hfill \Box$
\end{pr}
\end{theorem}
\begin{theorem} %Theorem 4.13
Let $G$ be a group, $k$ a field. Then the subset $\rm{Hom}(G,k^{\times}) \subseteq \rm{Maps}(G,k)$ is linearly independant in the $k$-vector space $\rm{Maps}(G,k)$.
\begin{pr}
Suppose $\rm{Hom}(G,k^{\times})$ is linearily dependant. Then let $n>0$ minimal, such that there exist distinct elements $\chi_1, \dots \chi_n \in \rm{Hom}(G,k^{\times})$ and $\lambda_1, \dots \lambda_n \in k^{\times}$ such that
$$ \sum_{i=0}^n \lambda_i \chi_i =0.$$
The $\chi_i$ are called \textit{characters}. Clearly we have $n \geqslant 2$. Choose $g \in G$ such that $\chi_1(g) \neq \chi_2(g)$.
For any $h \in G$ we have
$$0 = \sum_{i=0}^n \lambda_i \chi_i (gh)= \sum_{i=0}^n \underbrace{\lambda_i \chi_i(g)}_{=:\mu_i} \chi_i(h)=\sum_{i=0}^n \mu_i \chi_i(h).$$
Then we get
$$0 =\sum_{i=0}^n \mu_i \chi_i(h)= \sum_{i=0}^n \lambda_i \chi_i(g)\chi_i(h) \textrm{ } \Rightarrow \sum_{i=0}^n \underbrace{\left(\mu_i-\lambda_i \chi_1(g)\right)}_{=:\nu_i}\chi_i(h)=0.$$
Consider
$$\nu_1=\mu_1-\lambda_1 \chi_1(g)=\lambda_1 \chi_1(g)-\lambda_1 \chi_1(g)=0,$$
$$\nu_2=\mu_2-\lambda_2 \chi_1(g)=\lambda_2 \chi_2(g)-\lambda_2 \chi_1(g)=\underbrace{\lambda_2}_{\neq 0} \cdot \underbrace{\left(\chi_2(g)-\chi_1(g)\right)}_{\neq 0} \neq 0.$$
Hence $\chi_2, \dots \chi_n$ are linearily dependent. This is a contradiction to the minimality of $n$.$\hfill \Box$
\end{pr}
\end{theorem}
\begin{proposition} %Proposition 4.14
Let $L/k$ be a Galois extension such that $G:= \gal(L/k)=( \sigma )$ is cyclic of order $d$ for some $\sigma \in G$, where $\chara(k) \nmid d$. Let $\zeta_d \in k$ be a primitive $d$-th root of unity.\\
Then there exsits $\alpha \in L^{\times}$ such that $\sigma(\alpha)=\zeta \cdot \alpha$.
\begin{pr}
Let $$f:L \longrightarrow L, \qquad f(X)\ =\ \sum_{i=0}^{d-1} \zeta^{-i} \cdot \sigma^{i}(X).$$
Applying Theorem 4.10 on $G=L^{\times}$ and $k=L$ shows $f\neq 0$.
Then let $\gamma \in L$ such that $\alpha:=f(\gamma) \neq 0$. Then we have
\begin{alignat*}{13}