-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathrun_pretrain.py
241 lines (218 loc) · 14.3 KB
/
run_pretrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""
#################pre_train bert example on zh-wiki########################
python run_pretrain.py
"""
import os
import argparse
import mindspore.communication.management as D
from mindspore.communication.management import get_rank
import mindspore.common.dtype as mstype
from mindspore import context
from mindspore.train.model import Model
from mindspore.context import ParallelMode
from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
from mindspore.train.serialization import load_checkpoint, load_param_into_net
from mindspore.nn.optim import Lamb, Momentum, AdamWeightDecay
from mindspore import log as logger
from mindspore.common import set_seed
from src import BertNetworkWithLoss, BertTrainOneStepCell, BertTrainOneStepWithLossScaleCell, \
BertTrainAccumulateStepsWithLossScaleCell, BertTrainOneStepWithLossScaleCellForAdam, \
AdamWeightDecayForBert
from src.dataset import create_bert_dataset
from src.config import cfg, bert_net_cfg
from src.utils import LossCallBack, BertLearningRate
_current_dir = os.path.dirname(os.path.realpath(__file__))
def _set_bert_all_reduce_split(device_target='Ascend', enable_graph_kernel=False):
"""set bert all_reduce fusion split, support num_hidden_layers is 12 and 24."""
if bert_net_cfg.num_hidden_layers == 12:
if bert_net_cfg.use_relative_positions:
context.set_auto_parallel_context(all_reduce_fusion_config=[29, 58, 87, 116, 145, 174, 203, 217])
else:
context.set_auto_parallel_context(all_reduce_fusion_config=[28, 55, 82, 109, 136, 163, 190, 205])
if device_target == 'GPU' and enable_graph_kernel:
context.set_auto_parallel_context(all_reduce_fusion_config=[180, 205])
elif bert_net_cfg.num_hidden_layers == 24:
if bert_net_cfg.use_relative_positions:
context.set_auto_parallel_context(all_reduce_fusion_config=[30, 90, 150, 210, 270, 330, 390, 421])
else:
context.set_auto_parallel_context(all_reduce_fusion_config=[38, 93, 148, 203, 258, 313, 368, 397])
def _get_optimizer(args_opt, network):
"""get bert optimizer, support Lamb, Momentum, AdamWeightDecay."""
if cfg.optimizer == 'Lamb':
lr_schedule = BertLearningRate(learning_rate=cfg.Lamb.learning_rate,
end_learning_rate=cfg.Lamb.end_learning_rate,
warmup_steps=cfg.Lamb.warmup_steps,
decay_steps=args_opt.train_steps,
power=cfg.Lamb.power)
params = network.trainable_params()
decay_params = list(filter(cfg.Lamb.decay_filter, params))
other_params = list(filter(lambda x: not cfg.Lamb.decay_filter(x), params))
group_params = [{'params': decay_params, 'weight_decay': cfg.Lamb.weight_decay},
{'params': other_params},
{'order_params': params}]
optimizer = Lamb(group_params, learning_rate=lr_schedule, eps=cfg.Lamb.eps)
elif cfg.optimizer == 'Momentum':
optimizer = Momentum(network.trainable_params(), learning_rate=cfg.Momentum.learning_rate,
momentum=cfg.Momentum.momentum)
elif cfg.optimizer == 'AdamWeightDecay':
lr_schedule = BertLearningRate(learning_rate=cfg.AdamWeightDecay.learning_rate,
end_learning_rate=cfg.AdamWeightDecay.end_learning_rate,
warmup_steps=cfg.AdamWeightDecay.warmup_steps,
decay_steps=args_opt.train_steps,
power=cfg.AdamWeightDecay.power)
params = network.trainable_params()
decay_params = list(filter(cfg.AdamWeightDecay.decay_filter, params))
other_params = list(filter(lambda x: not cfg.AdamWeightDecay.decay_filter(x), params))
group_params = [{'params': decay_params, 'weight_decay': cfg.AdamWeightDecay.weight_decay},
{'params': other_params, 'weight_decay': 0.0},
{'order_params': params}]
if args_opt.enable_lossscale == "true" and args_opt.device_target == 'GPU':
optimizer = AdamWeightDecayForBert(group_params, learning_rate=lr_schedule, eps=cfg.AdamWeightDecay.eps)
else:
optimizer = AdamWeightDecay(group_params, learning_rate=lr_schedule, eps=cfg.AdamWeightDecay.eps)
else:
raise ValueError("Don't support optimizer {}, only support [Lamb, Momentum, AdamWeightDecay]".
format(cfg.optimizer))
return optimizer
def _auto_enable_graph_kernel(device_target, graph_kernel_mode):
"""Judge whether is suitable to enable graph kernel."""
return graph_kernel_mode in ("auto", "true") and device_target == 'GPU' and \
cfg.bert_network == 'base' and cfg.optimizer == 'AdamWeightDecay'
def run_pretrain():
"""pre-train bert_clue"""
parser = argparse.ArgumentParser(description='bert pre_training')
parser.add_argument('--device_target', type=str, default='Ascend', choices=['Ascend', 'GPU'],
help='device where the code will be implemented. (Default: Ascend)')
parser.add_argument("--distribute", type=str, default="false", choices=["true", "false"],
help="Run distribute, default is false.")
parser.add_argument("--epoch_size", type=int, default="1", help="Epoch size, default is 1.")
parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
parser.add_argument("--enable_save_ckpt", type=str, default="true", choices=["true", "false"],
help="Enable save checkpoint, default is true.")
parser.add_argument("--enable_lossscale", type=str, default="true", choices=["true", "false"],
help="Use lossscale or not, default is not.")
parser.add_argument("--do_shuffle", type=str, default="true", choices=["true", "false"],
help="Enable shuffle for dataset, default is true.")
parser.add_argument("--enable_data_sink", type=str, default="true", choices=["true", "false"],
help="Enable data sink, default is true.")
parser.add_argument("--data_sink_steps", type=int, default="1", help="Sink steps for each epoch, default is 1.")
parser.add_argument("--accumulation_steps", type=int, default="1",
help="Accumulating gradients N times before weight update, default is 1.")
parser.add_argument("--save_checkpoint_path", type=str, default="", help="Save checkpoint path")
parser.add_argument("--load_checkpoint_path", type=str, default="", help="Load checkpoint file path")
parser.add_argument("--save_checkpoint_steps", type=int, default=1000, help="Save checkpoint steps, "
"default is 1000.")
parser.add_argument("--train_steps", type=int, default=-1, help="Training Steps, default is -1, "
"meaning run all steps according to epoch number.")
parser.add_argument("--save_checkpoint_num", type=int, default=1, help="Save checkpoint numbers, default is 1.")
parser.add_argument("--data_dir", type=str, default="", help="Data path, it is better to use absolute path")
parser.add_argument("--schema_dir", type=str, default="", help="Schema path, it is better to use absolute path")
parser.add_argument("--enable_graph_kernel", type=str, default="auto", choices=["auto", "true", "false"],
help="Accelerate by graph kernel, default is auto.")
parser.add_argument("--optimizer", type=str, default="AdamWeightDecay", choices=["AdamWeightDecay", "Lamb", "Momentum"],
help="Optimizer, default is AdamWeightDecay.")
parser.add_argument("--enable_global_norm", type=str, default="true", choices=["true", "false"],
help="Enable gloabl norm for grad clip, default is true.")
parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.")
parser.add_argument("--dtype", type=str, default="fp32", choices=["fp32", "fp16"],
help="dtype, default is fp32.")
args_opt = parser.parse_args()
cfg.optimizer = args_opt.optimizer
cfg.batch_size = args_opt.batch_size
cfg.enable_global_norm = True if args_opt.enable_global_norm == "true" else False
bert_net_cfg.compute_type = mstype.float32 if args_opt.dtype== "fp32" else mstype.float16
logger.warning("\nargs_opt: {}".format(args_opt))
logger.warning("\ncfg: {}".format(cfg))
context.set_context(mode=context.GRAPH_MODE, device_target=args_opt.device_target, device_id=args_opt.device_id)
context.set_context(reserve_class_name_in_scope=False)
is_auto_enable_graph_kernel = _auto_enable_graph_kernel(args_opt.device_target, args_opt.enable_graph_kernel)
if args_opt.enable_graph_kernel == "true" or is_auto_enable_graph_kernel:
context.set_context(enable_graph_kernel=True)
ckpt_save_dir = args_opt.save_checkpoint_path
if args_opt.distribute == "true":
if args_opt.device_target == 'Ascend':
D.init()
device_num = args_opt.device_num
rank = args_opt.device_id % device_num
else:
D.init()
device_num = D.get_group_size()
rank = D.get_rank()
ckpt_save_dir = args_opt.save_checkpoint_path + 'ckpt_' + str(get_rank()) + '/'
context.reset_auto_parallel_context()
context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
device_num=device_num)
_set_bert_all_reduce_split(args_opt.device_target, context.get_context('enable_graph_kernel'))
else:
rank = 0
device_num = 1
if args_opt.accumulation_steps > 1:
logger.info("accumulation steps: {}".format(args_opt.accumulation_steps))
logger.info("global batch size: {}".format(cfg.batch_size * args_opt.accumulation_steps))
if args_opt.enable_data_sink == "true":
args_opt.data_sink_steps *= args_opt.accumulation_steps
logger.info("data sink steps: {}".format(args_opt.data_sink_steps))
if args_opt.enable_save_ckpt == "true":
args_opt.save_checkpoint_steps *= args_opt.accumulation_steps
logger.info("save checkpoint steps: {}".format(args_opt.save_checkpoint_steps))
ds = create_bert_dataset(device_num, rank, args_opt.do_shuffle, args_opt.data_dir, args_opt.schema_dir)
net_with_loss = BertNetworkWithLoss(bert_net_cfg, True)
new_repeat_count = args_opt.epoch_size * ds.get_dataset_size() // args_opt.data_sink_steps
if args_opt.train_steps > 0:
train_steps = args_opt.train_steps * args_opt.accumulation_steps
new_repeat_count = min(new_repeat_count, train_steps // args_opt.data_sink_steps)
else:
args_opt.train_steps = args_opt.epoch_size * ds.get_dataset_size() // args_opt.accumulation_steps
logger.info("train steps: {}".format(args_opt.train_steps))
optimizer = _get_optimizer(args_opt, net_with_loss)
callback = [TimeMonitor(args_opt.data_sink_steps), LossCallBack(ds.get_dataset_size())]
if args_opt.enable_save_ckpt == "true" and args_opt.device_id % min(8, device_num) == 0:
config_ck = CheckpointConfig(save_checkpoint_steps=args_opt.save_checkpoint_steps,
keep_checkpoint_max=args_opt.save_checkpoint_num)
ckpoint_cb = ModelCheckpoint(prefix='checkpoint_bert',
directory=None if ckpt_save_dir == "" else ckpt_save_dir, config=config_ck)
callback.append(ckpoint_cb)
if args_opt.load_checkpoint_path:
param_dict = load_checkpoint(args_opt.load_checkpoint_path)
load_param_into_net(net_with_loss, param_dict)
if args_opt.enable_lossscale == "true":
update_cell = DynamicLossScaleUpdateCell(loss_scale_value=cfg.loss_scale_value,
scale_factor=cfg.scale_factor,
scale_window=cfg.scale_window)
if args_opt.accumulation_steps <= 1:
if cfg.optimizer == 'AdamWeightDecay' and args_opt.device_target == 'GPU':
net_with_grads = BertTrainOneStepWithLossScaleCellForAdam(net_with_loss, optimizer=optimizer,
scale_update_cell=update_cell)
else:
net_with_grads = BertTrainOneStepWithLossScaleCell(net_with_loss, optimizer=optimizer,
scale_update_cell=update_cell)
else:
accumulation_steps = args_opt.accumulation_steps
net_with_grads = BertTrainAccumulateStepsWithLossScaleCell(net_with_loss, optimizer=optimizer,
scale_update_cell=update_cell,
accumulation_steps=accumulation_steps,
enable_global_norm=cfg.enable_global_norm)
else:
net_with_grads = BertTrainOneStepCell(net_with_loss, optimizer=optimizer)
model = Model(net_with_grads)
model.train(new_repeat_count, ds, callbacks=callback,
dataset_sink_mode=(args_opt.enable_data_sink == "true"), sink_size=args_opt.data_sink_steps)
if __name__ == '__main__':
set_seed(0)
run_pretrain()