-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutil.py
212 lines (179 loc) · 6.03 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
import torch
import math
import random
import json
import ast
import re
import os
import time
import pandas as pd
import pdb
import string
import numpy as np
import torch.distributed as dist
from torchaudio import transforms
from tokenizers import Tokenizer
from torch.nn.utils.rnn import pack_sequence, pad_packed_sequence
def mel_spectogram(sample_rate, hop_length, win_length, n_mels, power, normalized, min_max_energy_norm, norm, mel_scale, compression, audio):
audio_to_mel = transforms.Spectrogram(
hop_length=hop_length,
win_length=win_length,
n_fft=win_length,
power=power,
normalized=normalized,
).to(audio.device)
mel_scale = transforms.MelScale(
sample_rate=sample_rate,
n_stft=win_length // 2 + 1,
n_mels=n_mels,
f_min=0.,
f_max=sample_rate//2,
norm=norm,
mel_scale=mel_scale,
).to(audio.device)
spec = audio_to_mel(audio)
mel = mel_scale(spec)
if compression:
mel = dynamic_range_compression(mel)
return mel
def dynamic_range_compression(x, C=1, clip_val=1e-5):
"""Dynamic range compression for audio signals
"""
return torch.log(torch.clamp(x, min=clip_val) * C)
class statRecorder(object):
def __init__(self, *args, **kwargs):
self.losses = []
self.loss_temp = {}
self.loss_perm = {}
for loss in args:
self.loss_temp[loss] = 0.
self.loss_perm[loss] = []
self.losses.append(loss)
self.ddp = kwargs['ddp']
def add_loss(self, name):
self.loss_temp[name] = 0.
self.loss_perm[name] = []
self.losses.append(name)
def backward(self, loss_name, loss_val):
self.loss_temp[loss_name] += loss_val
def accumulate(self):
WS = dist.get_world_size() if self.ddp else 1
for loss_name, loss_val in self.loss_temp.items():
if self.ddp:
dist.all_reduce(self.loss_temp[loss_name])
self.loss_perm[loss_name].append(self.loss_temp[loss_name].item() / WS)
def reset(self):
for k in self.loss_temp:
self.loss_temp[k] = 0.
def empty(self):
for k in self.loss_perm:
self.loss_perm[k] = []
def display(self):
out = []
for k in self.loss_perm:
out.append(f' {k} = {np.mean(self.loss_perm[k])} ')
return '|'.join(out)
def get(self):
outDct = {}
for k in self.loss_perm:
outDct[k] = np.mean(self.loss_perm[k])
return outDct
def list_batch(X, lens):
sbatch_ = []
for i, l in enumerate(lens):
sbatch_.append(X[i,:l,:])
return sbatch_
def add_delta2(features):
buf = features.numpy()
frameN = buf.shape[0]
logmel = np.pad(buf, ((2,2),(0,0)), 'edge')
delta = logmel[2:,:] - logmel[:-2,:]
ddelta = delta[2:,:] - delta[:-2,:]
ldd = np.concatenate((logmel[2:-2,:], delta[1:-1,:], ddelta), axis=1)
ldd_shift = np.roll(ldd, -1, axis=0)
out = np.concatenate((ldd, ldd_shift), axis=1)
even = range(random.randint(0,1), frameN, 2)
fea = out[even]
return torch.from_numpy(fea)
def normalize_spec(x): # x -> (T, F)
mean = x.mean()
std = x.std() + 1e-5
x_ = (x - mean) / std
return x_, mean
def specaug2(X, M, fmask_prob=0.9, fmask_m=2, fmask_F=27, tmask_prob=0.9, tmask_m=10, tmask_m_relative_max=0.02, tmask_T=100):
input = X.numpy()
resetVal = M.item() #0.#input.mean()
t_size, f_size = input.shape
tmask_T = max(int(t_size * 0.05), 2)
if np.random.uniform() < fmask_prob:
num = random.randint(1, fmask_m)
for c in range(num):
f = random.randint(1, fmask_F)
f0 = random.randint(0, f_size - f)
input[:, f0:f0+f] = resetVal
if np.random.uniform() < tmask_prob:
num = random.randint(1, max(1, min(tmask_m, int(float(t_size)*tmask_m_relative_max))))
for c in range(num):
try:
t = random.randint(1, tmask_T)
except:
print(f't_size = {t_size} ; tmask_T = {tmask_T}')
raise ValueError('problem!')
t0 = random.randint(0, t_size - t)
input[t0:t0+t, :] = resetVal
return torch.from_numpy(input)
def clean4asr(text):
tokens = text.strip().split()
out = []
for tok in tokens:
if tok[0] == '[' and tok[-1] == ']':
continue
out.append(re.sub('[^A-Za-z0-9\s\-\']+','',tok).lower())
return ' '.join(out).strip()
def my_shuffle(x):
if len(x) == 1:
raise Exception
for i in reversed(range(1, len(x))):
# pick an element in x[:i] with which to exchange x[i]
j = int(random.random() * i)
x[i], x[j] = x[j], x[i]
def inject_seqn(X):
if X.size(0) == 1:
return X
mask_sn = torch.ones(X.shape[0],1,1)
zr = random.sample(list(range(X.shape[0])), int(0.2*X.shape[0]))
mask_sn[zr] = 0.
Z = list(range(X.shape[0]))
my_shuffle(Z)
X = torch.log(torch.exp(X) + 0.4 * torch.exp(X[Z]) * mask_sn)
return X
def load_dict(model, ptdict, ddp=False):
pretrained_dict = ptdict
model_dict = model.state_dict()
new_pt_dict = {}
for k, v in pretrained_dict.items():
k_new = k
if not ddp and k[:7] == 'module.':
k_new = k[7:]
elif ddp and k[:7] != 'module.':
k_new = f'module.{k}'
new_pt_dict[k_new] = v
pretrained_dict = {k: v for k, v in new_pt_dict.items() if k in model_dict}
#for k, v in new_pt_dict.items():
# if k not in model_dict:
# print(f'NOT PRESENT = {k}')
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
return model
def save_pick(obj, path):
with open(path, 'wb') as f:
pickle.dump(obj, f, pickle.HIGHEST_PROTOCOL)
def load_pick(path):
with open(path, 'rb') as f:
return pickle.load(f)
def save(model, path):
torch.save(model.state_dict(), path)
def load(model, path):
model.load_state_dict(torch.load(path))
def save_checkpoint(state, filename):
torch.save(state, filename)