-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathCP_CAKESLICE.DATA
392 lines (327 loc) · 10.3 KB
/
CP_CAKESLICE.DATA
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
-- This reservoir simulation deck is made available under the Open Database
-- License: http://opendatacommons.org/licenses/odbl/1.0/. Any rights in
-- individual contents of the database are licensed under the Database Contents
-- License: http://opendatacommons.org/licenses/dbcl/1.0/
-- Copyright (C) 2020 Equinor
-- This simulation is somewhat based on the data given in
-- 'Comparison of Solutions to a Three-Dimensional
-- Black-Oil Reservoir Simulation Problem' by Aziz S. Odeh,
-- Journal of Petroleum Technology, January 1981
-- NOTE: THIS IS A MODIFIED VERSION OF SPE1CASE2 WITH ONE CAKE SLICE (CORNER POINT SPIDER WEB GRID)
-- THIS MODEL HAS ONE OIL PRODUCCER IN THE CENTER OF THE GRID.
-- This model use keywords SPECGRID, COORD, ZCORN, ACTNUM, PERMX AND PERMY
---------------------------------------------------------------------------
------------------------ SPE1 - CASE 2 ------------------------------------
---------------------------------------------------------------------------
RUNSPEC
-- -------------------------------------------------------------------------
TITLE
SPE1 - CASE 2
DIMENS
5 1 1 /
-- The number of equilibration regions is inferred from the EQLDIMS
-- keyword.
EQLDIMS
/
-- The number of PVTW tables is inferred from the TABDIMS keyword;
-- when no data is included in the keyword the default values are used.
TABDIMS
/
OIL
GAS
WATER
FIELD
START
16 'JUN' 1988 /
WELLDIMS
-- Item 1: maximum number of wells in the model
-- - there are one wells in the problem; oil producer
-- Item 2: maximum number of grid blocks connected to any one well
-- - must be the same as nz, we have a full-penetrated vertical well
-- Item 3: maximum number of groups in the model
-- - we are dealing with only one 'group'
-- Item 4: maximum number of wells in any one group
-- - there must be one well in a group as there are one well in total
1 1 1 1 /
UNIFIN
UNIFOUT
GRID
NOECHO
-- The INIT keyword is used to request an .INIT file. The .INIT file
-- is written before the simulation actually starts, and contains grid
-- properties and saturation tables as inferred from the input
-- deck. There are no other keywords which can be used to configure
-- exactly what is written to the .INIT file.
INIT
SPECGRID
-- MAX MAX MAX MAX GRID
5 1 1 1 F
/
--
-- SPECIFY VERTICAL COORDINATE LINES FOR A REGULAR 5 x 1 x 1 GRID
-- (DX = 50 and DY = 100)
--
-- X1 Y1 Z1 X2 Y2 Z2
-- --- --- ---- --- --- ----
COORD
1005.00 1000.00 8325.00 1005.00 1000.00 8350.00
1010.00 1000.00 8325.00 1010.00 1000.00 8350.00
1020.00 1000.00 8325.00 1020.00 1000.00 8350.00
1040.00 1000.00 8325.00 1040.00 1000.00 8350.00
1080.00 1000.00 8325.00 1080.00 1000.00 8350.00
1160.00 1000.00 8325.00 1160.00 1000.00 8350.00
1003.54 1003.54 8325.00 1003.54 1003.54 8350.00
1007.07 1007.07 8325.00 1007.07 1007.07 8350.00
1014.14 1014.14 8325.00 1014.14 1014.14 8350.00
1028.28 1028.28 8325.00 1028.28 1028.28 8350.00
1056.57 1056.57 8325.00 1056.57 1056.57 8350.00
1113.14 1113.14 8325.00 1113.14 1113.14 8350.00
/
ZCORN
20*8325 20*8350
/
ACTNUM
1 1 1 1 1
/
PORO
-- Porosity in each level is contant
-- The values are specified in table 1 in Killough's paper
5*0.3 /
PERMX
5*100 /
COPY
PERMX PERMY /
PERMX PERMZ /
/
ECHO
PROPS
-- -------------------------------------------------------------------------
PVTW
-- Item 1: pressure reference (psia)
-- Item 2: water FVF (rb per bbl or rb per stb)
-- Item 3: water compressibility (psi^{-1})
-- Item 4: water viscosity (cp)
-- Item 5: water 'viscosibility' (psi^{-1})
-- Using values from Norne:
-- In METRIC units:
-- 277.0 1.038 4.67E-5 0.318 0.0 /
-- In FIELD units:
4017.55 1.038 3.22E-6 0.318 0.0 /
ROCK
-- Item 1: reference pressure (psia)
-- Item 2: rock compressibility (psi^{-1})
-- Using values from table 1 in Odeh:
14.7 3E-6 /
SWOF
-- Column 1: water saturation
-- - this has been set to (almost) equally spaced values from 0.12 to 1
-- Column 2: water relative permeability
-- - generated from the Corey-type approx. formula
-- the coeffisient is set to 10e-5, S_{orw}=0 and S_{wi}=0.12
-- Column 3: oil relative permeability when only oil and water are present
-- - we will use the same values as in column 3 in SGOF.
-- This is not really correct, but since only the first
-- two values are of importance, this does not really matter
-- Column 4: corresponding water-oil capillary pressure (psi)
0.12 0 1 0
0.18 4.64876033057851E-008 1 0
0.24 0.000000186 0.997 0
0.3 4.18388429752066E-007 0.98 0
0.36 7.43801652892562E-007 0.7 0
0.42 1.16219008264463E-006 0.35 0
0.48 1.67355371900826E-006 0.2 0
0.54 2.27789256198347E-006 0.09 0
0.6 2.97520661157025E-006 0.021 0
0.66 3.7654958677686E-006 0.01 0
0.72 4.64876033057851E-006 0.001 0
0.78 0.000005625 0.0001 0
0.84 6.69421487603306E-006 0 0
0.91 8.05914256198347E-006 0 0
1 0.00001 0 0 /
SGOF
-- Column 1: gas saturation
-- Column 2: gas relative permeability
-- Column 3: oil relative permeability when oil, gas and connate water are present
-- Column 4: oil-gas capillary pressure (psi)
-- - stated to be zero in Odeh's paper
-- Values in column 1-3 are taken from table 3 in Odeh's paper:
0 0 1 0
0.001 0 1 0
0.02 0 0.997 0
0.05 0.005 0.980 0
0.12 0.025 0.700 0
0.2 0.075 0.350 0
0.25 0.125 0.200 0
0.3 0.190 0.090 0
0.4 0.410 0.021 0
0.45 0.60 0.010 0
0.5 0.72 0.001 0
0.6 0.87 0.0001 0
0.7 0.94 0.000 0
0.85 0.98 0.000 0
0.88 0.984 0.000 0 /
--1.00 1.0 0.000 0 /
-- Warning from Eclipse: first sat. value in SWOF + last sat. value in SGOF
-- must not be greater than 1, but Eclipse still runs
-- Flow needs the sum to be excactly 1 so I added a row with gas sat. = 0.88
-- The corresponding krg value was estimated by assuming linear rel. between
-- gas sat. and krw. between gas sat. 0.85 and 1.00 (the last two values given)
DENSITY
-- Density (lb per ft³) at surface cond. of
-- oil, water and gas, respectively (in that order)
-- Using values from Norne:
-- In METRIC units:
-- 859.5 1033.0 0.854 /
-- In FIELD units:
53.66 64.49 0.0533 /
PVDG
-- Column 1: gas phase pressure (psia)
-- Column 2: gas formation volume factor (rb per Mscf)
-- - in Odeh's paper the units are said to be given in rb per bbl,
-- but this is assumed to be a mistake: FVF-values in Odeh's paper
-- are given in rb per scf, not rb per bbl. This will be in
-- agreement with conventions
-- Column 3: gas viscosity (cP)
-- Using values from lower right table in Odeh's table 2:
14.700 166.666 0.008000
264.70 12.0930 0.009600
514.70 6.27400 0.011200
1014.7 3.19700 0.014000
2014.7 1.61400 0.018900
2514.7 1.29400 0.020800
3014.7 1.08000 0.022800
4014.7 0.81100 0.026800
5014.7 0.64900 0.030900
9014.7 0.38600 0.047000 /
PVDO
-- Column 1: oil phase pressure (psia)
-- Column 3: oil FVF for saturated oil (rb per stb)
-- Column 4: oil viscosity for saturated oil (cP)
-- Use values from top left table in Odeh's table 2:
14.700 1.012 1.16
264.70 1.011 1.16
514.70 1.010 1.16
1014.7 1.009 1.16
2014.7 1.008 1.16
2514.7 1.007 1.16
3014.7 1.006 1.16
4014.7 1.005 1.16
5014.7 1.004 1.16
9014.7 1.003 1.16 /
-- In order to fulfill this requirement, values for oil FVF and viscosity
-- at 9014.7psia and GOR=1.618 for undersaturated oil have been approximated:
-- It has been assumed that there is a linear relation between the GOR
-- and the FVF when keeping the pressure constant at 9014.7psia.
-- From Odeh we know that (at 9014.7psia) the FVF is 2.357 at GOR=2.984
-- for saturated oil and that the FVF is 1.579 at GOR=1.27 for undersaturated oil,
-- so it is possible to use the assumption described above.
-- An equivalent approximation for the viscosity has been used.
/
SOLUTION
-- -------------------------------------------------------------------------
EQUIL
-- Item 1: datum depth (ft)
-- Item 2: pressure at datum depth (psia)
-- - Odeh's table 1 says that initial reservoir pressure is
-- 4800 psi at 8400ft, which explains choice of item 1 and 2
-- Item 3: depth of water-oil contact (ft)
-- - chosen to be directly under the reservoir
-- Item 4: oil-water capillary pressure at the water oil contact (psi)
-- - given to be 0 in Odeh's paper
-- Item 5: depth of gas-oil contact (ft)
-- - chosen to be directly above the reservoir
-- Item 6: gas-oil capillary pressure at gas-oil contact (psi)
-- - given to be 0 in Odeh's paper
-- Item #: 1 2 3 4 5 6 7 8 9
8400 4800 9325 0 8325 0 /
SUMMARY
-- -------------------------------------------------------------------------
-- 1a) Oil rate vs time
FOPR
-- Field Oil Production Rate
-- 1b) GOR vs time
WGOR
-- Well Gas-Oil Ratio
'PROD'
/
-- Using FGOR instead of WGOR:PROD results in the same graph
FGOR
-- In order to compare Eclipse with Flow:
WBHP
'PROD'
/
WGIR
'PROD'
/
WGIT
'PROD'
/
WGPR
'PROD'
/
WGPT
'PROD'
/
WOIR
'PROD'
/
WOIT
'PROD'
/
WOPR
'PROD'
/
WOPT
'PROD'
/
WWIR
'PROD'
/
WWIT
'PROD'
/
WWPR
'PROD'
/
WWPT
'PROD'
/
SCHEDULE
-- -------------------------------------------------------------------------
RPTSCHED
'PRES' 'SOIL' 'WELLS' /
RPTRST
'BASIC=1' /
-- If no resolution (i.e. case 1), the two following lines must be added:
--DRSDT
-- 0 /
-- Since this is Case 2, the two lines above have been commented out.
-- if DRSDT is set to 0, GOR cannot rise and free gas does not
-- dissolve in undersaturated oil -> constant bubble point pressure
WELSPECS
-- Item #: 1 2 3 4 5 6
'PROD' 'G1' 1 1 1* 'OIL' /
/
-- Coordinates in item 3-4 are retrieved from Odeh's figure 1 and 2
-- Note that the depth at the midpoint of the well grid blocks
-- has been used as reference depth for bottom hole pressure in item 5
COMPDAT
-- Item #: 1 2 3 4 5 6 7 8 9
'PROD' 1 1 1 1 'OPEN' 1* 1* 0.5 /
/
-- Coordinates in item 2-5 are retreived from Odeh's figure 1 and 2
-- Item 9 is the well bore internal diameter,
-- the radius is given to be 0.25ft in Odeh's paper
WCONPROD
-- Item #:1 2 3 4 5 9
'PROD' 'OPEN' 'ORAT' 2 4* 14.7 /
/
-- It is stated in Odeh's paper that the maximum oil prod. rate
-- is 20 000stb per day which explains the choice of value in item 4.
-- The items > 4 are defaulted with the exception of item 9,
-- the BHP lower limit, which is given to be 1000psia in Odeh's paper
TSTEP
--Advance the simulater once a month for ONE year:
31 28 31 30 31 30
/
END