diff --git a/osl_dynamics/__init__.py b/osl_dynamics/__init__.py index aca090f2..d535e083 100644 --- a/osl_dynamics/__init__.py +++ b/osl_dynamics/__init__.py @@ -1,16 +1,16 @@ import logging -from pkg_resources import DistributionNotFound, get_distribution +from importlib.metadata import PackageNotFoundError, version from osl_dynamics.config_api.pipeline import run_pipeline # Setup the version try: - __version__ = get_distribution("osl-dynamics").version -except DistributionNotFound: + __version__ = version("osl-dynamics") +except PackageNotFoundError: __version__ = "unknown" finally: - del get_distribution, DistributionNotFound + del version, PackageNotFoundError # Configure logging logging.basicConfig( diff --git a/osl_dynamics/analysis/spectral.py b/osl_dynamics/analysis/spectral.py index 1edfe91f..36834ab1 100644 --- a/osl_dynamics/analysis/spectral.py +++ b/osl_dynamics/analysis/spectral.py @@ -1263,12 +1263,12 @@ def autocorr_to_spectra( # Calculate the argments to keep for the given frequency range f = np.arange(nfft // 2 + 1) * sampling_frequency / nfft [min_arg, max_arg] = get_frequency_args_range(f, frequency_range) - f = f[min_arg:max_arg + 1] + f = f[min_arg : max_arg + 1] # Calculate cross power spectra as the Fourier transform of the # auto/cross-correlation function psd = np.fft.fft(autocorr_func, nfft) - psd = psd[..., min_arg:max_arg + 1] + psd = psd[..., min_arg : max_arg + 1] psd = abs(psd) # Normalise the power spectra @@ -1385,7 +1385,7 @@ def _welch_spectrogram( # Only keep a particular frequency range [min_arg, max_arg] = get_frequency_args_range(f, frequency_range) - f = f[min_arg:max_arg + 1] + f = f[min_arg : max_arg + 1] # Number of frequency bins n_freq = max_arg - min_arg + 1 @@ -1428,7 +1428,7 @@ def _welch_spectrogram( # Calculate cross spectra for the sub-window X = np.fft.fft(x_sub_window, nfft) - X = X[..., min_arg:max_arg + 1] + X = X[..., min_arg : max_arg + 1] XY = np.conj(X)[np.newaxis, :, :] * X[:, np.newaxis, :] XY_sub_window[k] = XY[m, n] @@ -1463,7 +1463,7 @@ def _welch_spectrogram( # Calculate PSD for the sub-window X = np.fft.fft(x_sub_window, nfft) - X = X[..., min_arg:max_arg + 1] + X = X[..., min_arg : max_arg + 1] XX_sub_window[k] = np.real(np.conj(X) * X) # Average the cross spectra for each sub-window @@ -1696,7 +1696,7 @@ def _multitaper_spectrogram( # Only keep a particular frequency range [min_arg, max_arg] = get_frequency_args_range(f, frequency_range) - f = f[min_arg:max_arg + 1] + f = f[min_arg : max_arg + 1] # Number of frequency bins n_freq = max_arg - min_arg + 1 @@ -1739,7 +1739,7 @@ def _multitaper_spectrogram( # Fourier transform X = np.fft.fft(x_sub_window, nfft) - X = X[..., min_arg:max_arg + 1] + X = X[..., min_arg : max_arg + 1] # Calculate cross spectra for the sub-window XY = np.conj(X)[:, :, np.newaxis, :] * X[:, np.newaxis, :, :] @@ -1776,7 +1776,7 @@ def _multitaper_spectrogram( # Fourier transform X = np.fft.fft(x_sub_window, nfft) - X = X[..., min_arg:max_arg + 1] + X = X[..., min_arg : max_arg + 1] # Calculate spectra for the sub-window XX = np.real(np.conj(X) * X)