-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaudio_classification.py
201 lines (163 loc) · 6.74 KB
/
audio_classification.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import argparse
import contextlib
import json
import math
import os
import wave
import librosa
import librosa.display
import matplotlib.pyplot as plt
import numpy as np
from pydub import AudioSegment
from pydub.silence import split_on_silence
from sklearn.model_selection import train_test_split
from tensorflow import keras
def main(args):
signal, sr = librosa.load(args.example_file, sr=22050)
display_sample_file(signal, sr)
display_signal_spectrum(signal, sr)
display_ft_spectogram(signal, sr)
save_mfcc(args)
inputs, targets = load_data(args.dataset_path)
inputs = np.asarray(inputs).astype(np.object)
targets = np.asarray(targets).astype(np.int)
inputs_train, inputs_test, targets_train, targets_test = train_test_split(inputs, targets, test_size=0.2)
model = keras.Sequential(
[
keras.layers.Flatten(input_shape=inputs.shape[0:]),
keras.layers.Dense(512, activation="relu", kernel_regularizer=keras.regularizers.l2(0.001)),
keras.layers.Dropout(0.3),
keras.layers.Dense(256, activation="relu", kernel_regularizer=keras.regularizers.l2(0.001)),
keras.layers.Dropout(0.3),
keras.layers.Dense(64, activation="relu", kernel_regularizer=keras.regularizers.l2(0.001)),
keras.layers.Dropout(0.3),
keras.layers.Dense(5, activation="softmax"),
]
)
optimizer = keras.optimizers.Adam(learning_rate=0.0001)
model.compile(optimizer=optimizer, loss="sparse_categorical_crossentropy", metrics=["accuracy"])
model.summary()
history = model.fit(
inputs_train, targets_train, validation_data=(inputs_test, targets_test), epochs=50, batch_size=32
)
plot_history(history)
def display_sample_file(signal, sr):
librosa.display.waveplot(signal, sr=sr)
plt.xlabel("Time")
plt.ylabel("Amplitute")
plt.show()
def display_signal_spectrum(signal, sr):
fft_value = np.fft.fft(signal)
magnitude = np.aps(fft_value)
frequency = np.linspace(0, sr, len(magnitude))
plt.plot(frequency, magnitude)
plt.xlabel("Frequency")
plt.ylabel("Magnitude")
plt.show()
left_frequency = frequency[: int(len(frequency) / 2)]
left_magnitude = magnitude[: int(len(magnitude) / 2)]
plt.plot(left_frequency, left_magnitude)
plt.xlabel("Left Frequency")
plt.ylabel("left Magnitude")
plt.show()
def display_ft_spectogram(signal, sr):
n_fft = 2048
hop_length = 512
stft = librosa.core.stft(signal, hop_length=hop_length, n_fft=n_fft)
spectogram = np.abs(stft)
log_spectogram = librosa.amplitude_to_db(spectogram)
librosa.display.specshow(log_spectogram, sr=sr, hop_length=hop_length)
plt.xlabel("Time")
plt.ylabel("Frequency")
plt.colorbar()
plt.show()
MFFCs = librosa.feature.mfcc(signal, n_fft=n_fft, hop_length=hop_length, n_mfcc=13)
librosa.display.specshow(
MFFCs,
sr=sr,
hop_length=hop_length,
)
plt.xlabel("Time")
plt.ylabel("MFCC")
plt.colorbar()
plt.show()
def save_mfcc(args, n_mfcc=13, n_fft=2048, hop_length=512):
data = {
"mapping": [],
"mfcc": [],
"labels": [],
}
for i, (dirpath, dirnames, filenames) in enumerate(os.walk(args.data_dir)):
if dirpath is not args.data_dir:
dirpath_components = dirpath.split("/")
semantic_label = dirpath_components[-1]
data["mappings"].append(semantic_label)
print("\nProcessing {}".format(semantic_label))
for f in filenames:
file_path = os.path.join(dirpath, f)
signal, sr = librosa.load(file_path, sr=args.sample_rate)
with contextlib.closing(wave.open(file_path, "r")) as file:
frames = file.getnframes()
rate = file.getframerate()
duration = frames / float(rate)
DURATION = duration
sound = AudioSegment.from_file(file_path, format="wav")
dBFS = sound.dBFS
chunks = split_on_silence(
sound,
min_silence_len=1000,
silence_thresh=dBFS - 16,
keep_silence=200,
)
target_length = 120 * 1000
output_chunks = [chunks[0]]
for chunk in chunks[1:]:
if len(output_chunks[-1]) < target_length:
output_chunks[-1] += chunk
else:
output_chunks.append(chunk)
num_segments = len(output_chunks)
SAMPLES_PER_TRACK = args.sample_rate * DURATION
num_samples_per_segment = int(SAMPLES_PER_TRACK / num_segments)
expected_num_mfcc_vectors_per_segment = math.ceil(num_samples_per_segment / hop_length)
for s in range(num_segments):
start_sample = num_samples_per_segment * s
finish_sample = start_sample + num_samples_per_segment
mfcc = librosa.feature.mfcc(
signal[start_sample:finish_sample], sr=sr, n_fft=n_fft, n_mfcc=n_mfcc, hop_length=hop_length
)
mfcc = mfcc.T # Transpose
if len(mfcc) == expected_num_mfcc_vectors_per_segment:
data["mfcc"].append(mfcc.tolist())
data["labels"].append(i - 1)
print("{}, segment:{}".format(file_path, s))
with open(args.dataset_path, "w") as fp:
json.dump(data, fp, indent=4)
def load_data(path):
with open(path, "r") as fp:
data = json.load(fp)
inputs = np.array(data["mfcc"], dtype="object")
targets = np.array(data["labels"], dtype="object")
return inputs, targets
def plot_history(history):
fig, axs = plt.subplot(2)
axs[0].plot(history.history["accuracy"], label="Train Accuracy")
axs[0].plot(history.history["val_accuracy"], label="Test Accuracy")
axs[0].set_ylabel("Accuracy")
axs[0].legent(loc="lower right")
axs[0].set_title("Accuracy eval")
axs[1].plot(history.history["loss"], label="Train Error")
axs[1].plot(history.history["val_loss"], label="Test Error")
axs[1].set_ylabel("Error")
axs[1].set_xlabel("Epoch")
axs[1].legent(loc="upper right")
axs[1].set_title("Error eval")
plt.show()
if __name__ == "__name__":
parser = argparse.ArgumentParser()
parser.add_argument("--example-file", type=str, default="audio/JOR/BmxpV9bna6A.wav")
parser.add_argument("--data-dir", type=str, default="audio")
parser.add_argument("--dataset-path", type=str, default="data.json")
parser.add_argument("sample-rate", type=int, default=22050)
args = parser.parse_args()
main(args)