-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalysis.R
151 lines (119 loc) · 4.07 KB
/
analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
#Load required packages
library("ggplot2")
library("plotly")
library("plyr")
library("gdata")
#Removing unused variables from global environment
remove(list=ls())
#loading the dataset
dataset <- read.csv(file="data.csv",header = T, sep=",")
#check the data set
head(dataset,3)
#checking the levels
str(dataset)
#Orientation plots of a user
#Function call to get the various users pattern in landscape and portrait
#The function needs 2 input values:-
# 1. User id - values range from 0 to 40
# 2. Phone orientation - values can be 1 or 2
orientation <- function(userid,orient)
{
#subset user with their respective ID
user <- dataset[dataset$uid == userid,]
qplot(data = user[(user$ph_ori == orient) ,], x = x_cord,
main = toupper(orientname(orient)),
y= y_cord)
}
orientname <- function(orient){
val1 <- NULL
if(orient==1)
{
val1 = "portrait"
}
else
{
val1 = "landscape"
}
val1 = (paste(val1,"orientation plot"))
return (val1)
}
#Orient = 1 : Phone is in portrait/vertical position
#Orient = 2 : Phone is in landscape position
orientation(1,2)
orientation(1,1)
#Sample data of 50000 training sets
smallset<-dataset[sample(nrow(dataset),50000),]
#Taking phone id and pressure
dataS1<-smallset[c(2,9)]
#Calculate mean & standard deviation of pressure for every user
phset<-ddply(dataS1, .(uid), summarise, prsr_mean=mean(pressure), prsr_sd=sd(pressure))
#Plot mean & sd points of pressure for every users (ID: 0 to 40)
ggplot(dataS1, aes(x=uid, y=pressure)) +
labs(x = "User ID", y = "Pressure Deviation") +
geom_point() + ggtitle("Pressure & Standard Deviation Points of all users")+
geom_point(data=phset, aes(y=prsr_sd), color='blue', size=4) +
geom_point(data=phset, aes(y=prsr_mean), color='red', size=4)
#Subset dataset with phone id 1
ph1 <- dataset[dataset$p_id == 1,]
#Plot Pressure of users for a random of 100 training sets
ph1_s <- ph1[sample(nrow(ph1),100),]
plot_ly(ph1_s, x = x_cord , y = y_cord,main = "Pressure dots of users for a random of 100 training sets",
text=paste("Pressure: ",pressure, "Area: ", area),
mode="markers", color = uid, size=uid )
#Plot Touch Traces of users in Nexus 1-Experimenter E
#Roll the cursor over the graph to check pressure points
#Valid users for phone_id=1 are 36,5,39,16,18,12
user_finger_trace <- function(userid)
{
set1 <- ph1[ph1$uid==userid,]
for (i in 1:length(set1$action))
{
if(set1$action[i]==0)
set1$action.name[i]="Touch Down Traces"
else if(set1$action[i]==1)
set1$action.name[i]="Touch Up Traces"
else
set1$action.name[i]="Finger Movement Traces"
}
p_set1 <- ggplot(data = set1, aes(x = x_cord, y = y_cord)) +
ggtitle((paste("Touch Traces of User ID ",userid,
"in Nexus 1-Experimenter E"))) +
labs(x="X Axis", y="Y Axis") +
geom_point(aes(text = paste("Pressure :", pressure)), size = 4) +
geom_smooth(aes(color = action.name, fill = action.name)) +
facet_wrap(~ action.name)
ggplotly(p_set1)
}
user_finger_trace(36)
#Plot traces of accessing wikipedia article & image comparison game
#Valid users for phone_id=1 are 36,5,39,16,18,12
user_doc_traces <- function(userid)
{
set1 <- ph1[ph1$uid== userid,]
for (i in 1:length(set1$docid))
{
if(set1$docid[i]==0)
set1$doc.name[i]="Wikipedia Artice 1"
else if(set1$docid[i]==1)
set1$doc.name[i]="Wikipedia Article 2"
else if(set1$docid[i]==2)
set1$doc.name[i]="Wikipedia Article 3"
else if(set1$docid[i]==3)
set1$doc.name[i]="Image Comparion Game 1"
else if(set1$docid[i]==4)
set1$doc.name[i]="Image Comparion Game 2"
else if(set1$docid[i]==5)
set1$doc.name[i]="Wikipedia Article 4"
else
set1$doc.name[i]="Image Comparion Game 3"
}
p_doc <- ggplot(data = set1, aes(x = x_cord, y = y_cord)) +
ggtitle((paste("Traces of User ID", userid,
"in various applications"))) +
labs(x = "X Axis", y = "Y Axis") +
geom_point(aes(text = paste( "Area :", area)), size = 4) +
geom_smooth(aes(color = doc.name, fill = doc.name)) +
facet_wrap(~ doc.name)
ggplotly(p_doc)
}
user_doc_traces(18)