-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsingle_error.py
116 lines (81 loc) · 4.2 KB
/
single_error.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# -*- coding: utf-8 -*-
"""
Created on Wed Jan 27 19:12:31 2021
generates deg model of csv file distance and ratios -> feed into degmodel.py to generate reall coefficients and then write error results and model into degmodel.csv
this code reads from output of python for deg model, reads distanes.tct and Degradation_Error.txt' and writes into onedeg.txt
output here is onedeg.csv but it generates as many as models you need
@author: gx7594
"""
from sklearn.preprocessing import PolynomialFeatures
from sklearn.linear_model import LinearRegression
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import csv
import statistics
import math
from sklearn.datasets import load_boston
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error, r2_score
from matplotlib import pyplot as plt
import os.path
from os import path
address="C:\\Users\\gx7594\\OneDrive - Wayne State University\\PhD\\AR-proj Class\\Searches\\Meetings Data\\Nov\\Nov3 and 4\\one_deg.csv"
already_objects=0
exist=False
name2=[]
if(path.exists(address)):
exist=True
dataset = pd.read_csv("C:\\Users\\gx7594\\OneDrive - Wayne State University\\PhD\\AR-proj Class\\Searches\\Meetings Data\\Nov\\Nov3 and 4\\one_deg.csv")
name1=dataset['name'].values.reshape(-1,1)
x=0
while(x<len(name1)):
name2.append(str(name1[x][0]))
x+=1
#name2=list(name1)
if(len(name2) !=0):
already_distance=dataset['distance'].values.reshape(-1,1)
already_objects=already_distance[len(already_distance)-1]
#dataset['distance'].values.reshape(-1,1)[len(already_distance)-1]=None
dataset=dataset.iloc[0:len(already_distance)-1,0:6]
dataset.to_csv(r'C:\\Users\\gx7594\\OneDrive - Wayne State University\\PhD\\AR-proj Class\\Searches\\Meetings Data\\Nov\\Nov3 and 4\\one_deg.csv'
, index = False, header=True)
with open('C:\\Users\\gx7594\\OneDrive - Wayne State University\\PhD\\AR-proj Class\\Searches\\Meetings Data\\Nov\\Nov3 and 4\\one_deg.csv', mode='+a',newline='') as degmodel_file, open('C:\\Users\\gx7594\\OneDrive - Wayne State University\\PhD\\AR-proj Class\\Searches\\Meetings Data\\Nov\\Nov3 and 4\\Degradation_Error.txt', mode='r') as deger , open('C:\\Users\\gx7594\\OneDrive - Wayne State University\\PhD\\AR-proj Class\\Searches\\Meetings Data\\Nov\\Nov3 and 4\\Distances.txt', mode='r') as dist:
file_writer = csv.writer(degmodel_file, delimiter=',', quotechar='"', quoting=csv.QUOTE_MINIMAL)
if(exist ==False):
file_writer.writerow(['distance','0.8','0.6','0.4','0.2','name'])
#
errors = deger.readlines()
distances1=dist.readlines()
count=int(distances1[0])
distances1=distances1[1:]
iterator=0
written_data=0
while(iterator<count):
j=0
j= int(distances1.index('\n') )
distances= distances1[:j]
i=0
name=str(distances[j-1][:-1])
#if(exist==True and len(name2)!=0):
if( name2.count(name)<=0):
written_data+=1
eror_lines=(len(distances)-1) # -2 since the end of distance is name of object
#j=eror_lines
er = [[]]*4
for k in range(1,5 ): # four decimations
er[k-1]=errors[eror_lines*(k-1) +k-1 :(eror_lines*k) +k-1 ]
last_index_error= (eror_lines*k) +k-1
#er[0][1]=er[0][1][:-1] removes \n in each cell
#print (er[0][1])
#print er[[]]
#print er[2][i]
while i< len(distances)-1:
print (er[0][i])
file_writer.writerow([ distances[i][:-1],str(er[0][i][:-1]),er[1][i][:-1],er[2][i][:-1],er[3][i][:-1],str(distances[j-1][:-1]) ])
i+=1
if(iterator<count):
distances1=distances1[j+1: len(distances1)]
errors=errors[last_index_error+1: len(errors)]
iterator+=1
file_writer.writerow([written_data+ int(already_objects)])