forked from rememberlenny/publicart-ml-endpoint
-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
105 lines (80 loc) · 2.87 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
from __future__ import division, print_function
# coding=utf-8
import sys
import os
import glob
import json
import re
import numpy as np
# Keras
from keras.applications.imagenet_utils import preprocess_input, decode_predictions
from keras.models import load_model
from keras.preprocessing import image
# Flask utils
from flask import Flask, redirect, url_for, request, render_template
from werkzeug.utils import secure_filename
from gevent.pywsgi import WSGIServer
# Define a flask app
app = Flask(__name__)
# Model saved with Keras model.save()
# MODEL_PATH = 'models/your_model.h5'
# Load your trained model
# model = load_model(MODEL_PATH)
# model._make_predict_function() # Necessary
# print('Model loaded. Start serving...')
# You can also use pretrained model from Keras
# Check https://keras.io/applications/
from keras.applications.vgg16 import VGG16
model = VGG16(weights='imagenet', include_top=False)
print('Model loaded. Check http://127.0.0.1:5000/')
def model_predict(img_path, model):
img = image.load_img(img_path, target_size=(224, 224))
# Preprocessing the image
x = image.img_to_array(img)
# x = np.true_divide(x, 255)
x = np.expand_dims(x, axis=0)
# Be careful how your trained model deals with the input
# otherwise, it won't make correct prediction!
x = preprocess_input(x)
preds = model.predict(x)
return preds
@app.route('/', methods=['GET'])
def index():
# Main page
return render_template('index.html')
@app.route('/predict', methods=['GET', 'POST'])
def upload():
if request.method == 'POST':
# Get the file from post request
f = request.files['file']
vgg16_feature_list = []
# Save the file to ./uploads
basepath = os.path.dirname(__file__)
file_path = os.path.join(
basepath, 'uploads', secure_filename(f.filename))
f.save(file_path)
vgg16_feature = model_predict(file_path, model)
vgg16_feature_np = np.array(vgg16_feature)
print(vgg16_feature_np)
print('112')
# np.set_printoptions(threshold=np.nan)
np_array_to_list = vgg16_feature_np.tolist()
print(np_array_to_list)
print('1231')
print(np_array_to_list)
print('223')
json_string = json.dumps({"data": np_array_to_list})
return json_string
# # Make prediction
# preds = model_predict(file_path, model)
# # Process your result for human
# # pred_class = preds.argmax(axis=-1) # Simple argmax
# pred_class = decode_predictions(preds, top=1) # ImageNet Decode
# result = str(pred_class[0][0][1]) # Convert to string
# return result
return None
if __name__ == '__main__':
# app.run(port=5002, debug=True)
# Serve the app with gevent
http_server = WSGIServer(('', 5000), app)
http_server.serve_forever()