-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
34 lines (26 loc) · 925 Bytes
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
"""
This module run an interface to edit a specific image
"""
import gradio as gr
import torch
from PIL import Image
from invertor.pte import PivotalTuningEdition
# You can change the path to your custom model
model = PivotalTuningEdition.load("./pte.pkl")
def generate(alpha: float) -> Image:
"""
Generate the image
:param alpha: Strength of editing
:type alpha: float
:return: Edited image
:rtype: Image
"""
return model.edit_pivot(torch.Tensor([alpha]).cuda())
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
feature = gr.Slider(minimum=-2, maximum=2, value=0, step=0.1, label="Lips")
btn = gr.Button("Run")
output = gr.Image(type="pil")
btn.click(fn=generate, inputs=[feature], outputs=output) # pylint: disable=E1101
demo.launch() # share=True, auth=("username", "JzshWD`=@.}nA&VaQ>^*B;HU-Ttm7LSj8xR_#M2+p$r:?wYdF~")