forked from philsaurabh/Predict-Something-ML-Prediction-App
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel2.py
26 lines (22 loc) · 753 Bytes
/
model2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import pandas as pd
import numpy as np
import joblib
from sklearn.linear_model import SGDClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import cross_validate
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
data = pd.read_csv("heart.csv")
data["trestbps"]=np.log(data["trestbps"])
data=data.drop(["fbs"],axis=1)
data=data.drop(["ca"],axis=1)
data["chol"]=np.log(data["chol"])
target=data["target"]
np.random.shuffle(data.values)
data=data.drop(["target"],axis=1)
sc= StandardScaler()
data=sc.fit_transform(data)
model2=SGDClassifier(loss="hinge", penalty="l2", max_iter=7)
model2.fit(data,target)
cv_results = cross_validate(model2, data,target, cv=10)
joblib.dump(model2,"model2")