-
Notifications
You must be signed in to change notification settings - Fork 1.9k
/
Copy pathmemMapIpc.cpp
641 lines (538 loc) · 22.3 KB
/
memMapIpc.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
/* Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of NVIDIA CORPORATION nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* This sample demonstrates Inter Process Communication
* using cuMemMap APIs and with one process per GPU for computation.
*/
#include <stdio.h>
#include <string.h>
#include <cstring>
#include <iostream>
#include "cuda.h"
#include "helper_multiprocess.h"
// includes, project
#include <helper_functions.h>
#include "helper_cuda_drvapi.h"
// includes, CUDA
#include <builtin_types.h>
using namespace std;
// For direct NVLINK and PCI-E peers, at max 8 simultaneous peers are allowed
// For NVSWITCH connected peers like DGX-2, simultaneous peers are not limited
// in the same way.
#define MAX_DEVICES (32)
#define PROCESSES_PER_DEVICE 1
#define DATA_BUF_SIZE 4ULL * 1024ULL * 1024ULL
static const char ipcName[] = "memmap_ipc_pipe";
static const char shmName[] = "memmap_ipc_shm";
typedef struct shmStruct_st {
size_t nprocesses;
int barrier;
int sense;
} shmStruct;
bool findModulePath(const char *, string &, char **, string &);
// define input ptx file for different platforms
#if defined(_WIN64) || defined(__LP64__)
#define PTX_FILE "memMapIpc_kernel64.ptx"
#else
#define PTX_FILE "memMapIpc_kernel32.ptx"
#endif
// `ipcHandleTypeFlag` specifies the platform specific handle type this sample
// uses for importing and exporting memory allocation. On Linux this sample
// specifies the type as CU_MEM_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR meaning that
// file descriptors will be used. On Windows this sample specifies the type as
// CU_MEM_HANDLE_TYPE_WIN32 meaning that NT HANDLEs will be used. The
// ipcHandleTypeFlag variable is a convenience variable and is passed by value
// to individual requests.
#if defined(__linux__) || defined(__QNX__)
CUmemAllocationHandleType ipcHandleTypeFlag =
CU_MEM_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR;
#else
CUmemAllocationHandleType ipcHandleTypeFlag = CU_MEM_HANDLE_TYPE_WIN32;
#endif
#if defined(__linux__) || defined(__QNX__)
#define cpu_atomic_add32(a, x) __sync_add_and_fetch(a, x)
#elif defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
#define cpu_atomic_add32(a, x) InterlockedAdd((volatile LONG *)a, x)
#else
#error Unsupported system
#endif
CUmodule cuModule;
CUfunction _memMapIpc_kernel;
static void barrierWait(volatile int *barrier, volatile int *sense,
unsigned int n) {
int count;
// Check-in
count = cpu_atomic_add32(barrier, 1);
if (count == n) { // Last one in
*sense = 1;
}
while (!*sense)
;
// Check-out
count = cpu_atomic_add32(barrier, -1);
if (count == 0) { // Last one out
*sense = 0;
}
while (*sense)
;
}
// Windows-specific LPSECURITYATTRIBUTES
void getDefaultSecurityDescriptor(CUmemAllocationProp *prop) {
#if defined(__linux__) || defined(__QNX__)
return;
#elif defined(WIN32) || defined(_WIN32) || defined(WIN64) || defined(_WIN64)
static const char sddl[] = "D:P(OA;;GARCSDWDWOCCDCLCSWLODTWPRPCRFA;;;WD)";
static OBJECT_ATTRIBUTES objAttributes;
static bool objAttributesConfigured = false;
if (!objAttributesConfigured) {
PSECURITY_DESCRIPTOR secDesc;
BOOL result = ConvertStringSecurityDescriptorToSecurityDescriptorA(
sddl, SDDL_REVISION_1, &secDesc, NULL);
if (result == 0) {
printf("IPC failure: getDefaultSecurityDescriptor Failed! (%d)\n",
GetLastError());
}
InitializeObjectAttributes(&objAttributes, NULL, 0, NULL, secDesc);
objAttributesConfigured = true;
}
prop->win32HandleMetaData = &objAttributes;
return;
#endif
}
static void memMapAllocateAndExportMemory(
unsigned char backingDevice, size_t allocSize,
std::vector<CUmemGenericAllocationHandle> &allocationHandles,
std::vector<ShareableHandle> &shareableHandles) {
// This property structure describes the physical location where the memory
// will be allocated via cuMemCreate along with additional properties.
CUmemAllocationProp prop = {};
// The allocations will be device pinned memory backed on backingDevice and
// exportable with the specified handle type.
prop.type = CU_MEM_ALLOCATION_TYPE_PINNED;
prop.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
// Back all allocations on backingDevice.
prop.location.id = (int)backingDevice;
// Passing a requestedHandleTypes indicates intention to export this
// allocation to a platform-specific handle. This sample requests a file
// descriptor on Linux and NT Handle on Windows.
prop.requestedHandleTypes = ipcHandleTypeFlag;
// Get the minimum granularity supported for allocation with cuMemCreate()
size_t granularity = 0;
checkCudaErrors(cuMemGetAllocationGranularity(
&granularity, &prop, CU_MEM_ALLOC_GRANULARITY_MINIMUM));
if (allocSize % granularity) {
printf(
"Allocation size is not a multiple of minimum supported granularity "
"for this device. Exiting...\n");
exit(EXIT_FAILURE);
}
// Windows-specific LPSECURITYATTRIBUTES is required when
// CU_MEM_HANDLE_TYPE_WIN32 is used. The security attribute defines the scope
// of which exported allocations may be tranferred to other processes. For all
// other handle types, pass NULL.
getDefaultSecurityDescriptor(&prop);
for (int i = 0; i < allocationHandles.size(); i++) {
// Create the allocation as a pinned allocation on device specified in
// prop.location.id
checkCudaErrors(cuMemCreate(&allocationHandles[i], allocSize, &prop, 0));
// Export the allocation to a platform-specific handle. The type of handle
// requested here must match the requestedHandleTypes field in the prop
// structure passed to cuMemCreate.
checkCudaErrors(cuMemExportToShareableHandle((void *)&shareableHandles[i],
allocationHandles[i],
ipcHandleTypeFlag, 0));
}
}
static void memMapImportAndMapMemory(
CUdeviceptr d_ptr, size_t mapSize,
std::vector<ShareableHandle> &shareableHandles, int mapDevice) {
std::vector<CUmemGenericAllocationHandle> allocationHandles;
allocationHandles.resize(shareableHandles.size());
// The accessDescriptor will describe the mapping requirement for the
// mapDevice passed as argument
CUmemAccessDesc accessDescriptor;
// Specify location for mapping the imported allocations.
accessDescriptor.location.type = CU_MEM_LOCATION_TYPE_DEVICE;
accessDescriptor.location.id = mapDevice;
// Specify both read and write accesses.
accessDescriptor.flags = CU_MEM_ACCESS_FLAGS_PROT_READWRITE;
for (int i = 0; i < shareableHandles.size(); i++) {
// Import the memory allocation back into a CUDA handle from the platform
// specific handle.
checkCudaErrors(cuMemImportFromShareableHandle(
&allocationHandles[i], (void *)(uintptr_t)shareableHandles[i],
ipcHandleTypeFlag));
// Assign the chunk to the appropriate VA range and release the handle.
// After mapping the memory, it can be referenced by virtual address.
checkCudaErrors(
cuMemMap(d_ptr + (i * mapSize), mapSize, 0, allocationHandles[i], 0));
// Since we do not need to make any other mappings of this memory or export
// it, we no longer need and can release the allocationHandle. The
// allocation will be kept live until it is unmapped.
checkCudaErrors(cuMemRelease(allocationHandles[i]));
}
// Retain peer access and map all chunks to mapDevice
checkCudaErrors(cuMemSetAccess(d_ptr, shareableHandles.size() * mapSize,
&accessDescriptor, 1));
}
static void memMapUnmapAndFreeMemory(CUdeviceptr dptr, size_t size) {
CUresult status = CUDA_SUCCESS;
// Unmap the mapped virtual memory region
// Since the handles to the mapped backing stores have already been released
// by cuMemRelease, and these are the only/last mappings referencing them,
// The backing stores will be freed.
// Since the memory has been unmapped after this call, accessing the specified
// va range will result in a fault (unitll it is remapped).
checkCudaErrors(cuMemUnmap(dptr, size));
// Free the virtual address region. This allows the virtual address region
// to be reused by future cuMemAddressReserve calls. This also allows the
// virtual address region to be used by other allocation made through
// opperating system calls like malloc & mmap.
checkCudaErrors(cuMemAddressFree(dptr, size));
}
static void memMapGetDeviceFunction(char **argv) {
// first search for the module path before we load the results
string module_path, ptx_source;
if (!findModulePath(PTX_FILE, module_path, argv, ptx_source)) {
if (!findModulePath("memMapIpc_kernel.cubin", module_path, argv,
ptx_source)) {
printf(
"> findModulePath could not find <simpleMemMapIpc> ptx or cubin\n");
exit(EXIT_FAILURE);
}
} else {
printf("> initCUDA loading module: <%s>\n", module_path.c_str());
}
// Create module from binary file (PTX or CUBIN)
if (module_path.rfind("ptx") != string::npos) {
// in this branch we use compilation with parameters
const unsigned int jitNumOptions = 3;
CUjit_option *jitOptions = new CUjit_option[jitNumOptions];
void **jitOptVals = new void *[jitNumOptions];
// set up size of compilation log buffer
jitOptions[0] = CU_JIT_INFO_LOG_BUFFER_SIZE_BYTES;
int jitLogBufferSize = 1024;
jitOptVals[0] = (void *)(size_t)jitLogBufferSize;
// set up pointer to the compilation log buffer
jitOptions[1] = CU_JIT_INFO_LOG_BUFFER;
char *jitLogBuffer = new char[jitLogBufferSize];
jitOptVals[1] = jitLogBuffer;
// set up pointer to set the Maximum # of registers for a particular kernel
jitOptions[2] = CU_JIT_MAX_REGISTERS;
int jitRegCount = 32;
jitOptVals[2] = (void *)(size_t)jitRegCount;
checkCudaErrors(cuModuleLoadDataEx(&cuModule, ptx_source.c_str(),
jitNumOptions, jitOptions,
(void **)jitOptVals));
printf("> PTX JIT log:\n%s\n", jitLogBuffer);
} else {
checkCudaErrors(cuModuleLoad(&cuModule, module_path.c_str()));
}
// Get function handle from module
checkCudaErrors(
cuModuleGetFunction(&_memMapIpc_kernel, cuModule, "memMapIpc_kernel"));
}
static void childProcess(int devId, int id, char **argv) {
volatile shmStruct *shm = NULL;
sharedMemoryInfo info;
ipcHandle *ipcChildHandle = NULL;
int blocks = 0;
int threads = 128;
checkIpcErrors(ipcOpenSocket(ipcChildHandle));
if (sharedMemoryOpen(shmName, sizeof(shmStruct), &info) != 0) {
printf("Failed to create shared memory slab\n");
exit(EXIT_FAILURE);
}
shm = (volatile shmStruct *)info.addr;
int procCount = (int)shm->nprocesses;
barrierWait(&shm->barrier, &shm->sense, (unsigned int)(procCount + 1));
// Receive all allocation handles shared by Parent.
std::vector<ShareableHandle> shHandle(procCount);
checkIpcErrors(ipcRecvShareableHandles(ipcChildHandle, shHandle));
CUcontext ctx;
CUdevice device;
CUstream stream;
int multiProcessorCount;
checkCudaErrors(cuDeviceGet(&device, devId));
checkCudaErrors(cuCtxCreate(&ctx, 0, device));
checkCudaErrors(cuStreamCreate(&stream, CU_STREAM_NON_BLOCKING));
// Obtain kernel function for the sample
memMapGetDeviceFunction(argv);
checkCudaErrors(cuOccupancyMaxActiveBlocksPerMultiprocessor(
&blocks, _memMapIpc_kernel, threads, 0));
checkCudaErrors(cuDeviceGetAttribute(
&multiProcessorCount, CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, device));
blocks *= multiProcessorCount;
CUdeviceptr d_ptr = 0ULL;
// Reserve the required contiguous VA space for the allocations
checkCudaErrors(cuMemAddressReserve(&d_ptr, procCount * DATA_BUF_SIZE,
DATA_BUF_SIZE, 0, 0));
// Import the memory allocations shared by the parent with us and map them in
// our address space.
memMapImportAndMapMemory(d_ptr, DATA_BUF_SIZE, shHandle, devId);
// Since we have imported allocations shared by the parent with us, we can
// close all the ShareableHandles.
for (int i = 0; i < procCount; i++) {
checkIpcErrors(ipcCloseShareableHandle(shHandle[i]));
}
checkIpcErrors(ipcCloseSocket(ipcChildHandle));
for (int i = 0; i < procCount; i++) {
size_t bufferId = (i + id) % procCount;
// Build arguments to be passed to cuda kernel.
CUdeviceptr ptr = d_ptr + (bufferId * DATA_BUF_SIZE);
int size = DATA_BUF_SIZE;
char val = (char)id;
void *args[] = {&ptr, &size, &val};
// Push a simple kernel on th buffer.
checkCudaErrors(cuLaunchKernel(_memMapIpc_kernel, blocks, 1, 1, threads, 1,
1, 0, stream, args, 0));
checkCudaErrors(cuStreamSynchronize(stream));
// Wait for all my sibling processes to push this stage of their work
// before proceeding to the next. This makes the data in the buffer
// deterministic.
barrierWait(&shm->barrier, &shm->sense, (unsigned int)procCount);
if (id == 0) {
printf("Step %lld done\n", (unsigned long long)i);
}
}
printf("Process %d: verifying...\n", id);
// Copy the data onto host and verify value if it matches expected value or
// not.
std::vector<char> verification_buffer(DATA_BUF_SIZE);
checkCudaErrors(cuMemcpyDtoHAsync(&verification_buffer[0],
d_ptr + (id * DATA_BUF_SIZE), DATA_BUF_SIZE,
stream));
checkCudaErrors(cuStreamSynchronize(stream));
// The contents should have the id of the sibling just after me
char compareId = (char)((id + 1) % procCount);
for (unsigned long long j = 0; j < DATA_BUF_SIZE; j++) {
if (verification_buffer[j] != compareId) {
printf("Process %d: Verification mismatch at %lld: %d != %d\n", id, j,
(int)verification_buffer[j], (int)compareId);
break;
}
}
// Clean up!
checkCudaErrors(cuStreamDestroy(stream));
checkCudaErrors(cuCtxDestroy(ctx));
// Unmap the allocations from our address space. Unmapping will also free the
// handle as we have already released the imported handle with the call to
// cuMemRelease. Finally, free up the Virtual Address space we reserved with
// cuMemAddressReserve.
memMapUnmapAndFreeMemory(d_ptr, procCount * DATA_BUF_SIZE);
exit(EXIT_SUCCESS);
}
static void parentProcess(char *app) {
int devCount, i, nprocesses = 0;
volatile shmStruct *shm = NULL;
sharedMemoryInfo info;
std::vector<Process> processes;
checkCudaErrors(cuDeviceGetCount(&devCount));
std::vector<CUdevice> devices(devCount);
if (sharedMemoryCreate(shmName, sizeof(*shm), &info) != 0) {
printf("Failed to create shared memory slab\n");
exit(EXIT_FAILURE);
}
shm = (volatile shmStruct *)info.addr;
memset((void *)shm, 0, sizeof(*shm));
for (i = 0; i < devCount; i++) {
checkCudaErrors(cuDeviceGet(&devices[i], i));
}
std::vector<CUcontext> ctxs;
std::vector<unsigned char> selectedDevices;
// Pick all the devices that can access each other's memory for this test
// Keep in mind that CUDA has minimal support for fork() without a
// corresponding exec() in the child process, but in this case our
// spawnProcess will always exec, so no need to worry.
for (i = 0; i < devCount; i++) {
bool allPeers = true;
int deviceComputeMode;
int deviceSupportsIpcHandle;
int attributeVal = 0;
checkCudaErrors(cuDeviceGet(&devices[i], i));
checkCudaErrors(cuDeviceGetAttribute(
&deviceComputeMode, CU_DEVICE_ATTRIBUTE_COMPUTE_MODE, devices[i]));
checkCudaErrors(cuDeviceGetAttribute(
&attributeVal, CU_DEVICE_ATTRIBUTE_VIRTUAL_ADDRESS_MANAGEMENT_SUPPORTED,
devices[i]));
#if defined(__linux__) || defined(__QNX__)
checkCudaErrors(cuDeviceGetAttribute(
&deviceSupportsIpcHandle,
CU_DEVICE_ATTRIBUTE_HANDLE_TYPE_POSIX_FILE_DESCRIPTOR_SUPPORTED,
devices[i]));
#else
checkCudaErrors(cuDeviceGetAttribute(
&deviceSupportsIpcHandle,
CU_DEVICE_ATTRIBUTE_HANDLE_TYPE_WIN32_HANDLE_SUPPORTED, devices[i]));
#endif
// Check that the selected device supports virtual address management
if (attributeVal == 0) {
printf("Device %d doesn't support VIRTUAL ADDRESS MANAGEMENT.\n",
devices[i]);
continue;
}
// This sample requires two processes accessing each device, so we need
// to ensure exclusive or prohibited mode is not set
if (deviceComputeMode != CU_COMPUTEMODE_DEFAULT) {
printf("Device %d is in an unsupported compute mode for this sample\n",
i);
continue;
}
if (!deviceSupportsIpcHandle) {
printf(
"Device %d does not support requested handle type for IPC, "
"skipping...\n",
i);
continue;
}
for (int j = 0; j < nprocesses; j++) {
int canAccessPeerIJ, canAccessPeerJI;
checkCudaErrors(
cuDeviceCanAccessPeer(&canAccessPeerJI, devices[j], devices[i]));
checkCudaErrors(
cuDeviceCanAccessPeer(&canAccessPeerIJ, devices[i], devices[j]));
if (!canAccessPeerIJ || !canAccessPeerJI) {
allPeers = false;
break;
}
}
if (allPeers) {
CUcontext ctx;
checkCudaErrors(cuCtxCreate(&ctx, 0, devices[i]));
ctxs.push_back(ctx);
// Enable peers here. This isn't necessary for IPC, but it will
// setup the peers for the device. For systems that only allow 8
// peers per GPU at a time, this acts to remove devices from CanAccessPeer
for (int j = 0; j < nprocesses; j++) {
checkCudaErrors(cuCtxSetCurrent(ctxs[i]));
checkCudaErrors(cuCtxEnablePeerAccess(ctxs[j], 0));
checkCudaErrors(cuCtxSetCurrent(ctxs[j]));
checkCudaErrors(cuCtxEnablePeerAccess(ctxs[i], 0));
}
selectedDevices.push_back(i);
nprocesses++;
if (nprocesses >= MAX_DEVICES) {
break;
}
} else {
printf(
"Device %d is not peer capable with some other selected peers, "
"skipping\n",
i);
}
}
for (int i = 0; i < ctxs.size(); ++i) {
checkCudaErrors(cuCtxDestroy(ctxs[i]));
};
if (nprocesses == 0) {
printf("No CUDA devices support IPC\n");
exit(EXIT_WAIVED);
}
shm->nprocesses = nprocesses;
unsigned char firstSelectedDevice = selectedDevices[0];
std::vector<ShareableHandle> shHandles(nprocesses);
std::vector<CUmemGenericAllocationHandle> allocationHandles(nprocesses);
// Allocate `nprocesses` number of memory chunks and obtain a shareable handle
// for each allocation. Share all memory allocations with all children.
memMapAllocateAndExportMemory(firstSelectedDevice, DATA_BUF_SIZE,
allocationHandles, shHandles);
// Launch the child processes!
for (i = 0; i < nprocesses; i++) {
char devIdx[10];
char procIdx[10];
char *const args[] = {app, devIdx, procIdx, NULL};
Process process;
SPRINTF(devIdx, "%d", selectedDevices[i]);
SPRINTF(procIdx, "%d", i);
if (spawnProcess(&process, app, args)) {
printf("Failed to create process\n");
exit(EXIT_FAILURE);
}
processes.push_back(process);
}
barrierWait(&shm->barrier, &shm->sense, (unsigned int)(nprocesses + 1));
ipcHandle *ipcParentHandle = NULL;
checkIpcErrors(ipcCreateSocket(ipcParentHandle, ipcName, processes));
checkIpcErrors(
ipcSendShareableHandles(ipcParentHandle, shHandles, processes));
// Close the shareable handles as they are not needed anymore.
for (int i = 0; i < nprocesses; i++) {
checkIpcErrors(ipcCloseShareableHandle(shHandles[i]));
}
// And wait for them to finish
for (i = 0; i < processes.size(); i++) {
if (waitProcess(&processes[i]) != EXIT_SUCCESS) {
printf("Process %d failed!\n", i);
exit(EXIT_FAILURE);
}
}
for (i = 0; i < nprocesses; i++) {
checkCudaErrors(cuMemRelease(allocationHandles[i]));
}
checkIpcErrors(ipcCloseSocket(ipcParentHandle));
sharedMemoryClose(&info);
}
// Host code
int main(int argc, char **argv) {
// Initialize
checkCudaErrors(cuInit(0));
if (argc == 1) {
parentProcess(argv[0]);
} else {
childProcess(atoi(argv[1]), atoi(argv[2]), argv);
}
return EXIT_SUCCESS;
}
bool inline findModulePath(const char *module_file, string &module_path,
char **argv, string &ptx_source) {
char *actual_path = sdkFindFilePath(module_file, argv[0]);
if (actual_path) {
module_path = actual_path;
} else {
printf("> findModulePath file not found: <%s> \n", module_file);
return false;
}
if (module_path.empty()) {
printf("> findModulePath could not find file: <%s> \n", module_file);
return false;
} else {
printf("> findModulePath found file at <%s>\n", module_path.c_str());
if (module_path.rfind(".ptx") != string::npos) {
FILE *fp = fopen(module_path.c_str(), "rb");
fseek(fp, 0, SEEK_END);
int file_size = ftell(fp);
char *buf = new char[file_size + 1];
fseek(fp, 0, SEEK_SET);
fread(buf, sizeof(char), file_size, fp);
fclose(fp);
buf[file_size] = '\0';
ptx_source = buf;
delete[] buf;
}
return true;
}
}