|
| 1 | +# SPDX-FileCopyrightText: Copyright (c) 2023-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. |
| 2 | +# SPDX-License-Identifier: Apache-2.0 |
| 3 | +# |
| 4 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +# you may not use this file except in compliance with the License. |
| 6 | +# You may obtain a copy of the License at |
| 7 | +# |
| 8 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +# |
| 10 | +# Unless required by applicable law or agreed to in writing, software |
| 11 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +# See the License for the specific language governing permissions and |
| 14 | +# limitations under the License. |
| 15 | + |
| 16 | +import argparse |
| 17 | +import os |
| 18 | + |
| 19 | +import torch |
| 20 | +import torch.distributed as dist |
| 21 | +import torch.multiprocessing as mp |
| 22 | +from eagle_utils import DataCollatorWithPadding, make_eagle_supervised_data_module |
| 23 | +from trainer.distill_trainer import EagleSGLTrainer, EagleTPTrainer |
| 24 | +from transformers import AutoTokenizer |
| 25 | + |
| 26 | +torch.manual_seed(0) |
| 27 | + |
| 28 | + |
| 29 | +def _setup_distributed(rank, args, backend="nccl"): |
| 30 | + """Initialize distributed environment""" |
| 31 | + os.environ["MASTER_ADDR"] = "localhost" |
| 32 | + os.environ["MASTER_PORT"] = args.master_port |
| 33 | + os.environ["LOCAL_RANK"] = str(rank) |
| 34 | + # Initialize process group |
| 35 | + dist.init_process_group(backend, rank=rank, world_size=args.world_size) |
| 36 | + if rank in args.teacher_ranks: |
| 37 | + torch.cuda.set_device(args.teacher_devices[rank]) |
| 38 | + else: |
| 39 | + torch.cuda.set_device(args.student_devices[rank - len(args.teacher_ranks)]) |
| 40 | + print( |
| 41 | + f"Starting process rank={rank}, device={torch.cuda.current_device()}, world_size={args.world_size}" |
| 42 | + ) |
| 43 | + args.teacher_pgroup = dist.new_group(ranks=args.teacher_ranks) |
| 44 | + args.student_pgroup = dist.new_group(ranks=args.student_ranks) |
| 45 | + |
| 46 | + |
| 47 | +def train(rank, args): |
| 48 | + _setup_distributed(rank, args) |
| 49 | + |
| 50 | + tokenizer = AutoTokenizer.from_pretrained( |
| 51 | + args.model_path, model_max_length=args.training_seq_len |
| 52 | + ) |
| 53 | + args.use_offline_training = False |
| 54 | + args.vlm_processor = None |
| 55 | + args.offline_data_path = None |
| 56 | + data_module = make_eagle_supervised_data_module(tokenizer, args) |
| 57 | + |
| 58 | + train_dataloader = torch.utils.data.DataLoader( |
| 59 | + data_module["train_dataset"], |
| 60 | + batch_size=args.batch_size, |
| 61 | + shuffle=True, |
| 62 | + num_workers=0, |
| 63 | + collate_fn=DataCollatorWithPadding(max_length=args.training_seq_len), |
| 64 | + drop_last=True, |
| 65 | + ) |
| 66 | + trainer_cls = { |
| 67 | + "sglang": EagleSGLTrainer, |
| 68 | + "hf": EagleTPTrainer, |
| 69 | + }[args.teacher_backend] |
| 70 | + trainer = trainer_cls(rank, args, tokenizer, train_dataloader) |
| 71 | + trainer.train() |
| 72 | + trainer.save(args.out_path) |
| 73 | + |
| 74 | + |
| 75 | +def main(): |
| 76 | + parser = argparse.ArgumentParser(description="Multi-GPU distributed two-stage forward example") |
| 77 | + |
| 78 | + # Training args |
| 79 | + parser.add_argument("--model_path", type=str, default="TinyLlama/TinyLlama-1.1B-Chat-v1.0") |
| 80 | + parser.add_argument("--data_path", type=str, required=True, help="Training dataset.") |
| 81 | + parser.add_argument("--training_seq_len", type=str, default=1024) |
| 82 | + parser.add_argument("--eagle_config_path", type=str, default="eagle_config.json") |
| 83 | + parser.add_argument("--out_path", type=str, default="ckpts/fast-trained") |
| 84 | + parser.add_argument("--lr", type=float, default=1e-5) |
| 85 | + parser.add_argument("--epoch", type=int, default=1) |
| 86 | + parser.add_argument("--batch_size", type=int, default=8, help="Total bs across all ranks.") |
| 87 | + |
| 88 | + # Trainer args |
| 89 | + parser.add_argument("--teacher_backend", type=str, choices=["sglang", "hf"], default="sglang") |
| 90 | + parser.add_argument( |
| 91 | + "--teacher_ep_size", |
| 92 | + type=int, |
| 93 | + default=1, |
| 94 | + help="Teacher EP size, only used for sglang backend.", |
| 95 | + ) |
| 96 | + parser.add_argument("--teacher_devices", type=list, default=[0, 1, 2, 3]) |
| 97 | + parser.add_argument("--student_devices", type=list, default=[4, 5, 6, 7]) |
| 98 | + parser.add_argument( |
| 99 | + "--lazy_preprocess", type=bool, default=True, help="Whether to use lazy preprocessing." |
| 100 | + ) |
| 101 | + parser.add_argument("--log_interval", type=int, default=50) |
| 102 | + parser.add_argument("--save_interval", type=int, default=20000) |
| 103 | + parser.add_argument( |
| 104 | + "--total_steps", type=int, default=60000, help="Total number of steps for debugging." |
| 105 | + ) |
| 106 | + parser.add_argument("--master_port", type=str, default="12357") |
| 107 | + |
| 108 | + args = parser.parse_args() |
| 109 | + # TODO: add sanity check for args |
| 110 | + |
| 111 | + def set_ranks(args): |
| 112 | + args.world_size = len(args.teacher_devices) + len(args.student_devices) |
| 113 | + args.teacher_ranks = list(range(len(args.teacher_devices))) |
| 114 | + args.student_ranks = list( |
| 115 | + range(len(args.teacher_devices), len(args.teacher_devices) + len(args.student_devices)) |
| 116 | + ) |
| 117 | + |
| 118 | + set_ranks(args) |
| 119 | + # Launch multiple processes |
| 120 | + mp.spawn( |
| 121 | + train, |
| 122 | + args=(args,), |
| 123 | + nprocs=args.world_size, |
| 124 | + join=True, |
| 125 | + ) |
| 126 | + |
| 127 | + |
| 128 | +if __name__ == "__main__": |
| 129 | + main() |
0 commit comments