|
| 1 | +# SPDX-FileCopyrightText: Copyright (c) 2023-2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. |
| 2 | +# SPDX-License-Identifier: Apache-2.0 |
| 3 | +# |
| 4 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +# you may not use this file except in compliance with the License. |
| 6 | +# You may obtain a copy of the License at |
| 7 | +# |
| 8 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +# |
| 10 | +# Unless required by applicable law or agreed to in writing, software |
| 11 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +# See the License for the specific language governing permissions and |
| 14 | +# limitations under the License. |
| 15 | + |
| 16 | +import pytest |
| 17 | +import torch |
| 18 | +from copy import deepcopy |
| 19 | +from functools import partial |
| 20 | +import modelopt.torch.quantization as mtq |
| 21 | +from modelopt.torch.export.unified_export_hf import export_hf_checkpoint |
| 22 | +from modelopt.torch.export.unified_export_megatron import export_mcore_gpt_to_hf |
| 23 | +from _test_utils.torch.transformers_models import create_tiny_llama_dir |
| 24 | +from _test_utils.torch.distributed.utils import spawn_multiprocess_job |
| 25 | +from _test_utils.torch.megatron.models import get_mcore_gpt_model |
| 26 | +from _test_utils.import_helper import skip_if_no_megatron |
| 27 | +from transformers import AutoModelForCausalLM |
| 28 | + |
| 29 | +import os |
| 30 | +import json |
| 31 | + |
| 32 | +skip_if_no_megatron(apex_or_te_required=True) |
| 33 | + |
| 34 | +@pytest.mark.parametrize("quant_cfg", [mtq.FP8_DEFAULT_CFG]) |
| 35 | +def test_hf_vllm_export(tmp_path, quant_cfg): |
| 36 | + """Test HuggingFace model export for vLLM with fake quantization. |
| 37 | + |
| 38 | + This test verifies: |
| 39 | + 1. Model weights match before and after export |
| 40 | + 2. quant_amax.pth file is created, huggingface config file does not exist |
| 41 | + 3. Amax values are correctly extracted and saved in quant_amax.pth file |
| 42 | + """ |
| 43 | + |
| 44 | + # Create a tiny LLaMA model for testing |
| 45 | + tiny_model_dir = create_tiny_llama_dir(tmp_path, with_tokenizer=True, num_hidden_layers=2) |
| 46 | + |
| 47 | + # Load the model |
| 48 | + model = AutoModelForCausalLM.from_pretrained(tiny_model_dir) |
| 49 | + model = model.cuda() |
| 50 | + model.eval() |
| 51 | + |
| 52 | + # Quantize the model |
| 53 | + def forward_loop(model): |
| 54 | + input_ids = torch.randint(0, model.config.vocab_size, (1, 128)).cuda() |
| 55 | + with torch.no_grad(): |
| 56 | + model(input_ids) |
| 57 | + |
| 58 | + model = mtq.quantize(model, quant_cfg, forward_loop) |
| 59 | + |
| 60 | + model_state_dict = deepcopy(model.state_dict()) |
| 61 | + |
| 62 | + # Export directory |
| 63 | + export_dir = tmp_path / "vllm_export" |
| 64 | + export_dir.mkdir(exist_ok=True) |
| 65 | + |
| 66 | + # Export for vLLM |
| 67 | + export_hf_checkpoint(model, export_dir=export_dir, export_vllm_fq_weights_qstate=True) |
| 68 | + |
| 69 | + # check if quant_amax.pth file exists |
| 70 | + quant_amax_file = export_dir / "quant_amax.pth" |
| 71 | + assert quant_amax_file.exists(), f"quant_amax.pth file should be created in {export_dir}" |
| 72 | + |
| 73 | + # make sure hf_quant_config.json file does not exist |
| 74 | + hf_quant_config_file = export_dir / "hf_quant_config.json" |
| 75 | + assert not hf_quant_config_file.exists(), f"hf_quant_config.json file should not be created in {export_dir}" |
| 76 | + |
| 77 | + # check weights match before and after export |
| 78 | + model_after = AutoModelForCausalLM.from_pretrained(export_dir) |
| 79 | + model_after = model_after.cuda() |
| 80 | + model_after.eval() |
| 81 | + model_after_state_dict = model_after.state_dict() |
| 82 | + amax_state_dict = {} |
| 83 | + for key in model_state_dict.keys(): |
| 84 | + if key.endswith("_amax"): |
| 85 | + amax_state_dict[key] = model_state_dict[key] |
| 86 | + continue |
| 87 | + |
| 88 | + assert torch.allclose(model_state_dict[key], model_after_state_dict[key], atol=1e-6), ( |
| 89 | + f"Weight mismatch for {key}: " |
| 90 | + f"before shape={model_state_dict[key].shape}, after shape={model_after_state_dict[key].shape}, " |
| 91 | + f"max diff={torch.abs(model_state_dict[key] - model_after_state_dict[key]).max()}" |
| 92 | + ) |
| 93 | + |
| 94 | + # Verify amax values are correct |
| 95 | + amax_dict = torch.load(quant_amax_file) |
| 96 | + assert len(amax_dict) > 0, "amax_dict should not be empty" |
| 97 | + assert amax_dict.keys() == amax_state_dict.keys(), f"amax keys mismatch between before and after export" |
| 98 | + |
| 99 | + |
| 100 | +def _test_mcore_vllm_export(tmp_path, quant_cfg, rank, size): |
| 101 | + """Test megatron-core model export for vLLM with fake quantization. |
| 102 | + |
| 103 | + """ |
| 104 | + # Create a tiny mcore GPT model |
| 105 | + num_layers = 2 |
| 106 | + hidden_size = 64 |
| 107 | + num_attention_heads = 8 |
| 108 | + num_query_groups = size |
| 109 | + ffn_hidden_size = 128 |
| 110 | + max_sequence_length = 32 |
| 111 | + vocab_size = 64 |
| 112 | + |
| 113 | + model = get_mcore_gpt_model( |
| 114 | + tensor_model_parallel_size=size, |
| 115 | + pipeline_model_parallel_size=1, |
| 116 | + initialize_megatron=True, |
| 117 | + num_layers=num_layers, |
| 118 | + hidden_size=hidden_size, |
| 119 | + num_attention_heads=num_attention_heads, |
| 120 | + num_query_groups=num_query_groups, |
| 121 | + ffn_hidden_size=ffn_hidden_size, |
| 122 | + max_sequence_length=max_sequence_length, |
| 123 | + vocab_size=vocab_size, |
| 124 | + activation_func="swiglu", |
| 125 | + normalization="RMSNorm", |
| 126 | + transformer_impl="modelopt", |
| 127 | + ).cuda() |
| 128 | + model.eval() |
| 129 | + |
| 130 | + # Quantize the model |
| 131 | + def forward_loop(model): |
| 132 | + batch_size = 1 |
| 133 | + seq_len = 32 |
| 134 | + input_ids = torch.randint(0, vocab_size, (batch_size, seq_len)).cuda() |
| 135 | + position_ids = torch.arange(seq_len).unsqueeze(0).cuda() |
| 136 | + # Create causal attention mask |
| 137 | + attention_mask = torch.tril(torch.ones((1, 1, seq_len, seq_len))).cuda() |
| 138 | + attention_mask = attention_mask < 0.5 # Convert to boolean mask |
| 139 | + with torch.no_grad(): |
| 140 | + model(input_ids, position_ids, attention_mask) |
| 141 | + |
| 142 | + model = mtq.quantize(model, quant_cfg, forward_loop) |
| 143 | + |
| 144 | + model_state_dict = deepcopy(model.state_dict()) |
| 145 | + |
| 146 | + # Create HF config for export |
| 147 | + pretrained_config = { |
| 148 | + "architectures": ["LlamaForCausalLM"], |
| 149 | + "attention_bias": False, |
| 150 | + "hidden_size": hidden_size, |
| 151 | + "intermediate_size": ffn_hidden_size, |
| 152 | + "max_position_embeddings": max_sequence_length, |
| 153 | + "model_type": "llama", |
| 154 | + "num_attention_heads": num_attention_heads, |
| 155 | + "num_hidden_layers": num_layers, |
| 156 | + "num_key_value_heads": num_query_groups, |
| 157 | + "torch_dtype": "bfloat16", |
| 158 | + } |
| 159 | + |
| 160 | + with open(tmp_path / "config.json", "w") as f: |
| 161 | + json.dump(pretrained_config, f) |
| 162 | + |
| 163 | + # Export directory |
| 164 | + export_dir = tmp_path / "vllm_export" |
| 165 | + export_dir.mkdir(exist_ok=True) |
| 166 | + |
| 167 | + # Export for vLLM |
| 168 | + export_mcore_gpt_to_hf( |
| 169 | + model, |
| 170 | + pretrained_model_name_or_path=tmp_path, |
| 171 | + dtype=torch.bfloat16, |
| 172 | + export_dir=str(export_dir), |
| 173 | + export_vllm_fq_weights_qstate=True, |
| 174 | + ) |
| 175 | + |
| 176 | + # check if quant_amax.pth file exists |
| 177 | + quant_amax_file = export_dir / "quant_amax.pth" |
| 178 | + assert quant_amax_file.exists(), f"quant_amax.pth file should be created in {export_dir}" |
| 179 | + |
| 180 | + # make sure hf_quant_config.json file does not exist |
| 181 | + hf_quant_config_file = export_dir / "hf_quant_config.json" |
| 182 | + assert not hf_quant_config_file.exists(), f"hf_quant_config.json file should not be created in {export_dir}" |
| 183 | + |
| 184 | + |
| 185 | +@pytest.mark.parametrize("quant_cfg", [mtq.FP8_DEFAULT_CFG]) |
| 186 | +def test_mcore_vllm_export(tmp_path, quant_cfg): |
| 187 | + """Wrapper test function for mcore vLLM export.""" |
| 188 | + spawn_multiprocess_job( |
| 189 | + size=1, |
| 190 | + job=partial(_test_mcore_vllm_export, tmp_path, quant_cfg), |
| 191 | + backend="nccl", |
| 192 | + ) |
| 193 | + |
| 194 | + |
0 commit comments