|
23 | 23 | from conftest import assert_eq |
24 | 24 |
|
25 | 25 | from merlin.core import dispatch |
26 | | -from merlin.core.compat import HAS_GPU |
| 26 | +from merlin.core.compat import HAS_GPU, cudf |
27 | 27 | from merlin.core.dispatch import make_df |
28 | 28 | from merlin.io import Dataset |
29 | 29 | from merlin.schema import Tags |
@@ -150,7 +150,7 @@ def test_torch_drp_reset(tmpdir, batch_size, drop_last, num_rows): |
150 | 150 | # Each column has only one unique value |
151 | 151 | # We test that each value in chunk (output of dataloader) |
152 | 152 | # is equal to every value in dataframe |
153 | | - if dispatch.HAS_GPU: |
| 153 | + if cudf and isinstance(df, cudf.DataFrame): |
154 | 154 | assert ( |
155 | 155 | np.expand_dims(chunk[0][col].cpu().numpy(), 1) == df[col].values_host |
156 | 156 | ).all() |
@@ -224,7 +224,7 @@ def test_gpu_file_iterator_ds(df, dataset, batch): |
224 | 224 |
|
225 | 225 | @pytest.mark.parametrize("part_mem_fraction", [0.001, 0.06]) |
226 | 226 | @pytest.mark.parametrize("batch_size", [1000]) |
227 | | -@pytest.mark.parametrize("cpu", [False, True] if HAS_GPU else [True]) |
| 227 | +@pytest.mark.parametrize("cpu", [False, True] if HAS_GPU and cudf else [True]) |
228 | 228 | def test_dataloader_break(dataset, batch_size, part_mem_fraction, cpu): |
229 | 229 | dataloader = torch_loader( |
230 | 230 | dataset, |
@@ -257,7 +257,7 @@ def test_dataloader_break(dataset, batch_size, part_mem_fraction, cpu): |
257 | 257 |
|
258 | 258 | @pytest.mark.parametrize("part_mem_fraction", [0.001, 0.06]) |
259 | 259 | @pytest.mark.parametrize("batch_size", [1000]) |
260 | | -@pytest.mark.parametrize("cpu", [False, True] if HAS_GPU else [True]) |
| 260 | +@pytest.mark.parametrize("cpu", [False, True] if HAS_GPU and cudf else [True]) |
261 | 261 | def test_dataloader(df, dataset, batch_size, part_mem_fraction, cpu): |
262 | 262 | dataloader = torch_loader( |
263 | 263 | dataset, |
@@ -336,7 +336,7 @@ def test_mh_support(multihot_dataset): |
336 | 336 |
|
337 | 337 |
|
338 | 338 | @pytest.mark.parametrize("batch_size", [1000]) |
339 | | -@pytest.mark.parametrize("cpu", [False, True] if HAS_GPU else [True]) |
| 339 | +@pytest.mark.parametrize("cpu", [False, True] if HAS_GPU and cudf else [True]) |
340 | 340 | def test_dataloader_schema(df, dataset, batch_size, cpu): |
341 | 341 | with torch_loader( |
342 | 342 | dataset, |
|
0 commit comments