-
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcheck.rs
329 lines (297 loc) · 11 KB
/
check.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
use inetnum::{addr::Prefix, asn::Asn};
use crate::{
runtime::ty::{
Reflect, TypeDescription, TypeRegistry, GLOBAL_TYPE_REGISTRY,
},
typechecker::{
info::TypeInfo,
scope::{ResolvedName, ScopeRef},
types::{Type, TypeDefinition},
},
};
use std::{
any::TypeId, fmt::Display, mem::MaybeUninit, net::IpAddr, sync::Arc,
};
#[derive(Debug)]
pub enum FunctionRetrievalError {
DoesNotExist { name: String, existing: Vec<String> },
IncorrectNumberOfArguments { expected: usize, got: usize },
TypeMismatch(String, TypeMismatch),
}
#[derive(Debug)]
pub struct TypeMismatch {
pub rust_ty: String,
pub roto_ty: String,
}
impl Display for FunctionRetrievalError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
match self {
FunctionRetrievalError::DoesNotExist { name, existing } => {
writeln!(f, "The function `{name}` does not exist.")?;
writeln!(f, "Hint: the following functions are defined:")?;
for n in existing {
writeln!(f, " - {n}")?;
}
Ok(())
}
FunctionRetrievalError::IncorrectNumberOfArguments {
expected,
got,
} => {
writeln!(f, "The number of arguments do not match")?;
writeln!(f, "The Roto function has {expected} arguments, but the Rust function has {got}.")
}
FunctionRetrievalError::TypeMismatch(
ctx,
TypeMismatch { rust_ty, roto_ty },
) => {
writeln!(
f,
"The types for {ctx} of the function do not match"
)?;
writeln!(f, "Expected `{roto_ty}` got `{rust_ty}`.")
}
}
}
}
pub fn check_roto_type_reflect<T: Reflect>(
type_info: &mut TypeInfo,
roto_ty: &Type,
) -> Result<(), TypeMismatch> {
let mut registry = GLOBAL_TYPE_REGISTRY.lock().unwrap();
let rust_ty = registry.resolve::<T>().type_id;
check_roto_type(®istry, type_info, rust_ty, roto_ty)
}
#[allow(non_snake_case)]
fn check_roto_type(
registry: &TypeRegistry,
type_info: &mut TypeInfo,
rust_ty: TypeId,
roto_ty: &Type,
) -> Result<(), TypeMismatch> {
// Convert this to consts when TypeId::of is const on stable
let BOOL: TypeId = TypeId::of::<bool>();
let U8: TypeId = TypeId::of::<u8>();
let U16: TypeId = TypeId::of::<u16>();
let U32: TypeId = TypeId::of::<u32>();
let U64: TypeId = TypeId::of::<u64>();
let I8: TypeId = TypeId::of::<i8>();
let I16: TypeId = TypeId::of::<i16>();
let I32: TypeId = TypeId::of::<i32>();
let I64: TypeId = TypeId::of::<i64>();
let UNIT: TypeId = TypeId::of::<()>();
let ASN: TypeId = TypeId::of::<Asn>();
let IPADDR: TypeId = TypeId::of::<IpAddr>();
let PREFIX: TypeId = TypeId::of::<Prefix>();
let STRING: TypeId = TypeId::of::<Arc<str>>();
let Some(rust_ty) = registry.get(rust_ty) else {
return Err(TypeMismatch {
rust_ty: "unknown".into(),
roto_ty: roto_ty.to_string(),
});
};
let error_message = TypeMismatch {
rust_ty: rust_ty.rust_name.to_string(),
roto_ty: roto_ty.to_string(),
};
let mut roto_ty = type_info.resolve(roto_ty);
if let Type::IntVar(_) = roto_ty {
roto_ty = Type::named("i32", Vec::new());
}
match rust_ty.description {
TypeDescription::Leaf => {
let expected_name = match rust_ty.type_id {
x if x == BOOL => "bool",
x if x == U8 => "u8",
x if x == U16 => "u16",
x if x == U32 => "u32",
x if x == U64 => "u64",
x if x == I8 => "i8",
x if x == I16 => "i16",
x if x == I32 => "i32",
x if x == I64 => "i64",
x if x == UNIT => "Unit",
x if x == ASN => "Asn",
x if x == IPADDR => "IpAddr",
x if x == PREFIX => "Prefix",
x if x == STRING => "String",
_ => panic!(),
};
let expected_roto = Type::named(expected_name, Vec::new());
if expected_roto == roto_ty {
Ok(())
} else {
Err(error_message)
}
}
TypeDescription::Val(ty) => {
let Type::Name(type_name) = roto_ty else {
return Err(error_message);
};
let TypeDefinition::Runtime(_, id) =
type_info.resolve_type_name(&type_name)
else {
return Err(error_message);
};
if ty != id {
return Err(error_message);
}
Ok(())
}
TypeDescription::ConstPtr(_) => Err(error_message),
TypeDescription::MutPtr(_) => Err(error_message), // TODO: actually check this
TypeDescription::Verdict(rust_accept, rust_reject) => {
let Type::Name(type_name) = &roto_ty else {
return Err(error_message);
};
if type_name.name
!= (ResolvedName {
scope: ScopeRef::GLOBAL,
ident: "Verdict".into(),
})
{
return Err(error_message);
}
let [roto_accept, roto_reject] = &type_name.arguments[..] else {
return Err(error_message);
};
check_roto_type(registry, type_info, rust_accept, roto_accept)?;
check_roto_type(registry, type_info, rust_reject, roto_reject)?;
Ok(())
}
TypeDescription::Option(rust_ty) => {
let Type::Name(type_name) = &roto_ty else {
return Err(error_message);
};
if type_name.name
!= (ResolvedName {
scope: ScopeRef::GLOBAL,
ident: "Optional".into(),
})
{
return Err(error_message);
}
let [roto_ty] = &type_name.arguments[..] else {
return Err(error_message);
};
check_roto_type(registry, type_info, rust_ty, roto_ty)
}
// We don't do results, we should hint towards verdict when using them.
TypeDescription::Result(_, _) => Err(error_message),
}
}
/// Parameters of a Roto function
///
/// This trait allows for checking the types against Roto types and converting
/// the values into values appropriate for Roto.
///
/// The `invoke` method can (unsafely) invoke a pointer as if it were a function
/// with these parameters.
///
/// This trait is implemented on tuples of various sizes.
pub trait RotoParams {
type Transformed;
/// This type but with [`Reflect::AsParam`] applied to each element.
type AsParams;
fn transform(self) -> Self::Transformed;
/// Convert to `Self::AsParams`.
fn as_params(transformed: &mut Self::Transformed) -> Self::AsParams;
/// Check whether these parameters match a parameter list from Roto.
fn check(
type_info: &mut TypeInfo,
ty: &[Type],
) -> Result<(), FunctionRetrievalError>;
/// Call a function pointer as if it were a function with these parameters.
///
/// This is _extremely_ unsafe, do not pass this arbitrary pointers and
/// always call `RotoParams::check` before calling this function. Don't
/// forget to also check the return type.
///
/// A [`TypedFunc`](super::TypedFunc) is a safe abstraction around this
/// function.
unsafe fn invoke<Ctx: 'static, Return: Reflect>(
self,
ctx: &mut Ctx,
func_ptr: *const u8,
return_by_ref: bool,
) -> Return;
}
/// Little helper macro to create a unit
macro_rules! unit {
($t:tt) => {
()
};
}
/// Implement the [`RotoParams`] trait for a tuple with some type parameters.
macro_rules! params {
($($t:ident),*) => {
#[allow(non_snake_case)]
#[allow(unused_variables)]
#[allow(unused_mut)]
impl<$($t,)*> RotoParams for ($($t,)*)
where $($t: Reflect,)* {
type Transformed = ($($t::Transformed,)*);
type AsParams = ($($t::AsParam,)*);
fn transform(self) -> Self::Transformed {
let ($($t,)*) = self;
return ($($t.transform(),)*);
}
fn as_params(transformed: &mut Self::Transformed) -> Self::AsParams {
let ($($t,)*) = transformed;
return ($($t::as_param($t),)*);
}
fn check(
type_info: &mut TypeInfo,
ty: &[Type]
) -> Result<(), FunctionRetrievalError> {
let [$($t),*] = ty else {
let x: &[()] = &[$(unit!($t)),*];
return Err(FunctionRetrievalError::IncorrectNumberOfArguments {
expected: ty.len(),
got: x.len(),
});
};
// Little hack to return a bool even with no parameters
let mut i = 0;
$(
i += 1;
check_roto_type_reflect::<$t>(type_info, $t)
.map_err(|e| FunctionRetrievalError::TypeMismatch(format!("argument {i}"), e))?;
)*
Ok(())
}
unsafe fn invoke<Ctx: 'static, Return: Reflect>(self, ctx: &mut Ctx, func_ptr: *const u8, return_by_ref: bool) -> Return {
let mut transformed = <Self as RotoParams>::transform(self);
let ($($t,)*) = <Self as RotoParams>::as_params(&mut transformed);
// We forget values that we pass into Roto. The script is responsible
// for cleaning them op. Forgetting copy types does nothing, but that's
// fine.
#[allow(forgetting_copy_types)]
std::mem::forget(transformed);
if return_by_ref {
let func_ptr = unsafe {
std::mem::transmute::<*const u8, fn(*mut Return::Transformed, *mut Ctx, $($t::AsParam),*) -> ()>(func_ptr)
};
let mut ret = MaybeUninit::<Return::Transformed>::uninit();
func_ptr(ret.as_mut_ptr(), ctx as *mut Ctx, $($t),*);
let transformed_ret = unsafe { ret.assume_init() };
let ret: Return = Return::untransform(transformed_ret);
ret
} else {
let func_ptr = unsafe {
std::mem::transmute::<*const u8, fn(*mut Ctx, $($t::AsParam),*) -> Return>(func_ptr)
};
func_ptr(ctx as *mut Ctx, $($t),*)
}
}
}
};
}
params!();
params!(A1);
params!(A1, A2);
params!(A1, A2, A3);
params!(A1, A2, A3, A4);
params!(A1, A2, A3, A4, A5);
params!(A1, A2, A3, A4, A5, A6);
params!(A1, A2, A3, A4, A5, A6, A7);