Skip to content

Commit 7c0bdac

Browse files
author
bostdm
committed
Clean lints with lintr
1 parent 00043bd commit 7c0bdac

File tree

1 file changed

+26
-26
lines changed

1 file changed

+26
-26
lines changed

chapters/05-01-hcup-amadeus-usecase.Rmd

Lines changed: 26 additions & 26 deletions
Original file line numberDiff line numberDiff line change
@@ -255,8 +255,8 @@ saveRDS(avg_smoke_density, "smoke_density_avg_byZip.R")
255255
# # A tibble: 6 × 4
256256
# ZCTA5CE10 avg_light avg_medium avg_heavy
257257
# <fct> <dbl> <dbl> <dbl>
258-
# 1 97833 0.129 0.194 0.419
259-
# 2 97840 0.161 0.226 0.387
258+
# 1 97833 0.129 0.194 0.419
259+
# 2 97840 0.161 0.226 0.387
260260
# 3 97330 0.290 0.129 0.0323
261261
# 4 97004 0.258 0.0968 0.0323
262262
# 5 97023 0.194 0.0968 0.0323
@@ -299,27 +299,27 @@ subset_data <- or_sedd_2021 %>%
299299
select(FEMALE, ZIP, PSTCO, AGE, RACE, AMONTH, starts_with("I10_"))
300300
head(subset_data)
301301
302-
# [1] "FEMALE" "ZIP" "PSTCO"
303-
# [4] "AGE" "RACE" "AMONTH"
302+
# [1] "FEMALE" "ZIP" "PSTCO"
303+
# [4] "AGE" "RACE" "AMONTH"
304304
# [7] "I10_DX_Visit_Reason1" "I10_DX_Visit_Reason2" "I10_DX_Visit_Reason3"
305-
# [10] "I10_DX1" "I10_DX2" "I10_DX3"
306-
# [13] "I10_DX4" "I10_DX5" "I10_DX6"
307-
# [16] "I10_DX7" "I10_DX8" "I10_DX9"
308-
# [19] "I10_DX10" "I10_DX11" "I10_DX12"
309-
# [22] "I10_DX13" "I10_DX14" "I10_DX15"
310-
# [25] "I10_DX16" "I10_DX17" "I10_DX18"
311-
# [28] "I10_DX19" "I10_DX20" "I10_DX21"
312-
# [31] "I10_DX22" "I10_DX23" "I10_DX24"
313-
# [34] "I10_DX25" "I10_DX26" "I10_DX27"
314-
# [37] "I10_DX28" "I10_NDX" "I10_PROCTYPE"
305+
# [10] "I10_DX1" "I10_DX2" "I10_DX3"
306+
# [13] "I10_DX4" "I10_DX5" "I10_DX6"
307+
# [16] "I10_DX7" "I10_DX8" "I10_DX9"
308+
# [19] "I10_DX10" "I10_DX11" "I10_DX12"
309+
# [22] "I10_DX13" "I10_DX14" "I10_DX15"
310+
# [25] "I10_DX16" "I10_DX17" "I10_DX18"
311+
# [28] "I10_DX19" "I10_DX20" "I10_DX21"
312+
# [31] "I10_DX22" "I10_DX23" "I10_DX24"
313+
# [34] "I10_DX25" "I10_DX26" "I10_DX27"
314+
# [37] "I10_DX28" "I10_NDX" "I10_PROCTYPE"
315315
316316
```
317317

318318
Next we will select July as our month of interest to further reduce the size of the data and to focus on a time frame where we know fires took place in Oregon. We will also load in our environmental data files we made above from amadeus.
319319

320320
```{r eval=FALSE}
321321
# subset data to July
322-
july_subset_hcup_data <- subset_data[subset_data$AMONTH == 7,]
322+
july_subset_hcup_data <- subset_data[subset_data$AMONTH == 7, ]
323323
324324
# load in amadeus files we made previously
325325
avg_smoke_density <- readRDS("smoke_density_avg_byZip.R")
@@ -331,13 +331,13 @@ total_smoke_density <- readRDS("smoke_density_total_byZip.R")
331331
We will now merge our environmental data into our hospital discharge (HCUP) data using an inner join on ZIP codes present in both datasets.
332332

333333
```{r eval=FALSE}
334-
# Perform an inner join to merge `july_subset_hcup_data` with
335-
# `avg_smoke_density` based on the ZIP code (`ZIP` in HCUP data and
334+
# Perform an inner join to merge `july_subset_hcup_data` with
335+
# `avg_smoke_density` based on the ZIP code (`ZIP` in HCUP data and
336336
# `ZCTA5CE10` in smoke density data)
337337
merged_data <- inner_join(july_subset_hcup_data, avg_smoke_density,
338338
by = c("ZIP" = "ZCTA5CE10"))
339339
340-
# Perform another inner join to add `total_smoke_density` to the existing
340+
# Perform another inner join to add `total_smoke_density` to the existing
341341
# `merged_data`
342342
merged_data <- inner_join(merged_data, total_smoke_density,
343343
by = c("ZIP" = "ZCTA5CE10"))
@@ -391,30 +391,30 @@ Finally, we fit a logistic regression model to examine the relationship between
391391
```{r eval=FALSE}
392392
# Fit a logistic regression model with asthma diagnosis as the outcome variable
393393
# and different smoke exposure levels as predictors
394-
model <- glm(has_asthma ~ avg_light + avg_medium + avg_heavy,
394+
model <- glm(has_asthma ~ avg_light + avg_medium + avg_heavy,
395395
data = smoke_summary, family = binomial)
396396
397397
# Display model summary
398398
summary(model)
399399
# Call:
400-
# glm(formula = has_asthma ~ avg_light + avg_medium + avg_heavy,
400+
# glm(formula = has_asthma ~ avg_light + avg_medium + avg_heavy,
401401
# family = binomial, data = smoke_summary)
402-
#
402+
#
403403
# Coefficients:
404-
# Estimate Std. Error z value Pr(>|z|)
404+
# Estimate Std. Error z value Pr(>|z|)
405405
# (Intercept) -3.38823 0.09077 -37.329 < 2e-16 ***
406-
# avg_light -0.21258 0.30322 -0.701 0.483
406+
# avg_light -0.21258 0.30322 -0.701 0.483
407407
# avg_medium 1.74996 0.32456 5.392 6.98e-08 ***
408408
# avg_heavy 1.82572 0.16826 10.850 < 2e-16 ***
409409
# ---
410410
# Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
411-
#
411+
#
412412
# (Dispersion parameter for binomial family taken to be 1)
413-
#
413+
#
414414
# Null deviance: 42004 on 111124 degrees of freedom
415415
# Residual deviance: 41674 on 111121 degrees of freedom
416416
# AIC: 41682
417-
#
417+
#
418418
# Number of Fisher Scoring iterations: 6
419419
```
420420

0 commit comments

Comments
 (0)