Master
Development
Django backend server for machine learning on event logs.
The docker build is available @ https://hub.docker.com/r/nirdizatiresearch/predict-python/ in any case if you prefer to setup your environment on your own you can refer the Dockerfile.
On first run to setup the database, you can run:
docker-compose run server python manage.py migrate
To run the project:
docker-compose up redis server scheduler worker
To access a generic remote Django server you can use the ssh tunneling functionality as shown in the following sample:
ssh -L 8000:127.0.0.1:8000 <user>@<host>
If you are familiar with docker-compose the docker-compose file is available, otherwise if you use PyCharm as IDE run the provided configurations. Finally, from the command line you can use the following sample commands to interact with our software.
Start server with
python manage.py runserver
Run tests with one of the following
python manage.py test
./manage.py test
NB: always run a redis-server in background if you want your server to accept any incoming post requests!
Start by running migrations and adding sample data
python manage.py migrate
python manage.py loaddata <your_file.json>
Start jobs from command line
curl --request POST \
--header 'Content-Type: application/json' \
--data-binary '{
"type": "classification",
"split_id": 1,
"config": {
"encodings": ["simpleIndex"],
"clusterings": ["noCluster"],
"methods": ["randomForest"],
"label": {"type": "remaining_time"},
"encoding": {"prefix_length": 3, "generation_type": "only", "padding": "zero_padding"}
}
}' \
http://localhost:8000/jobs/multiple
Creating a single split options.
- $SPLIT_TYPE has to be one of
split_sequential
,split_random
,split_temporal
,split_strict_temporal
. By defaultsplit_sequential
. test_size
has to be from 0 to 1. By default 0.2
curl --request POST \ --header 'Content-Type: application/json' \ --data-binary '{ "type": "single", "original_log": 1, "config": { "test_size": 0.2, "split_type": $SPLIT_TYPE } }' \ http://localhost:8000/splits/
Prediction methods accept configuration for sklearn classification/regression methods. The Job config must contain a dict with only the supported options for that method. The dict name must take the format "type.method". For classification randomForest this would be classification.randomForest
. Advanced configuration is optional. Look at jobs/job_creator.py
for default values. For example, the configuration for classification KNN would have to be like:
curl --request POST \ --header 'Content-Type: application/json' \ --data-binary '{ "type": "classification", "split_id": 1, "config": { "encodings": ["simpleIndex"], "clusterings": ["noCluster"], "methods": ["knn"], "classification.knn": { "n_neighbors": 5, "weights": "uniform" }, "label": {"type": "remaining_time"}, "encoding": {"prefix_length": 3, "generation_type": "up_to", "padding": "no_padding"} } }' \ http://localhost:8000/jobs/multiple
Log encoding and labelling can be tested before prediction. It supports all the same values as classification and regression jobs but the method and clustering.
curl --request POST \ --header 'Content-Type: application/json' \ --data-binary '{ "type": "labelling", "split_id": 5, "config": { "label": {"type": "remaining_time"}, "encoding": {"prefix_length": 3, "generation_type": "up_to", "padding": "no_padding"} } }' \ http://localhost:8000/jobs/multiple
- @stebranchi Stefano Branchi
- @dfmchiara Chiara Di Francescomarino
- @TKasekamp Tõnis Kasekamp
- @mrsonuk Santosh Kumar
- @fmmaggi Fabrizio Maggi
- @WilliamsRizzi Williams Rizzi
- @HitLuca Luca Simonetto