-
Notifications
You must be signed in to change notification settings - Fork 313
/
Copy pathtransformer.py
271 lines (227 loc) · 11 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# [Attention Is All You Need](https://arxiv.org/pdf/1706.03762.pdf)
import tensorflow as tf
from tensorflow import keras
import numpy as np
import utils # this refers to utils.py in my [repo](https://github.com/MorvanZhou/NLP-Tutorials/)
import time
import pickle
import os
MODEL_DIM = 32
MAX_LEN = 12
N_LAYER = 3
N_HEAD = 4
DROP_RATE = 0.1
class MultiHead(keras.layers.Layer):
def __init__(self, n_head, model_dim, drop_rate):
super().__init__()
self.head_dim = model_dim // n_head
self.n_head = n_head
self.model_dim = model_dim
self.wq = keras.layers.Dense(n_head * self.head_dim)
self.wk = keras.layers.Dense(n_head * self.head_dim)
self.wv = keras.layers.Dense(n_head * self.head_dim) # [n, step, h*h_dim]
self.o_dense = keras.layers.Dense(model_dim)
self.o_drop = keras.layers.Dropout(rate=drop_rate)
self.attention = None
def call(self, q, k, v, mask, training):
_q = self.wq(q) # [n, q_step, h*h_dim]
_k, _v = self.wk(k), self.wv(v) # [n, step, h*h_dim]
_q = self.split_heads(_q) # [n, h, q_step, h_dim]
_k, _v = self.split_heads(_k), self.split_heads(_v) # [n, h, step, h_dim]
context = self.scaled_dot_product_attention(_q, _k, _v, mask) # [n, q_step, h*dv]
o = self.o_dense(context) # [n, step, dim]
o = self.o_drop(o, training=training)
return o
def split_heads(self, x):
x = tf.reshape(x, (x.shape[0], x.shape[1], self.n_head, self.head_dim)) # [n, step, h, h_dim]
return tf.transpose(x, perm=[0, 2, 1, 3]) # [n, h, step, h_dim]
def scaled_dot_product_attention(self, q, k, v, mask=None):
dk = tf.cast(k.shape[-1], dtype=tf.float32)
score = tf.matmul(q, k, transpose_b=True) / (tf.math.sqrt(dk) + 1e-8) # [n, h_dim, q_step, step]
if mask is not None:
score += mask * -1e9
self.attention = tf.nn.softmax(score, axis=-1) # [n, h, q_step, step]
context = tf.matmul(self.attention, v) # [n, h, q_step, step] @ [n, h, step, dv] = [n, h, q_step, dv]
context = tf.transpose(context, perm=[0, 2, 1, 3]) # [n, q_step, h, dv]
context = tf.reshape(context, (context.shape[0], context.shape[1], -1)) # [n, q_step, h*dv]
return context
class PositionWiseFFN(keras.layers.Layer):
def __init__(self, model_dim):
super().__init__()
dff = model_dim * 4
self.l = keras.layers.Dense(dff, activation=keras.activations.relu)
self.o = keras.layers.Dense(model_dim)
def call(self, x):
o = self.l(x)
o = self.o(o)
return o # [n, step, dim]
class EncodeLayer(keras.layers.Layer):
def __init__(self, n_head, model_dim, drop_rate):
super().__init__()
self.ln = [keras.layers.LayerNormalization(axis=-1) for _ in range(2)] # only norm z-dim
self.mh = MultiHead(n_head, model_dim, drop_rate)
self.ffn = PositionWiseFFN(model_dim)
self.drop = keras.layers.Dropout(drop_rate)
def call(self, xz, training, mask):
attn = self.mh.call(xz, xz, xz, mask, training) # [n, step, dim]
o1 = self.ln[0](attn + xz)
ffn = self.drop(self.ffn.call(o1), training)
o = self.ln[1](ffn + o1) # [n, step, dim]
return o
class Encoder(keras.layers.Layer):
def __init__(self, n_head, model_dim, drop_rate, n_layer):
super().__init__()
self.ls = [EncodeLayer(n_head, model_dim, drop_rate) for _ in range(n_layer)]
def call(self, xz, training, mask):
for l in self.ls:
xz = l.call(xz, training, mask)
return xz # [n, step, dim]
class DecoderLayer(keras.layers.Layer):
def __init__(self, n_head, model_dim, drop_rate):
super().__init__()
self.ln = [keras.layers.LayerNormalization(axis=-1) for _ in range(3)] # only norm z-dim
self.drop = keras.layers.Dropout(drop_rate)
self.mh = [MultiHead(n_head, model_dim, drop_rate) for _ in range(2)]
self.ffn = PositionWiseFFN(model_dim)
def call(self, yz, xz, training, yz_look_ahead_mask, xz_pad_mask):
attn = self.mh[0].call(yz, yz, yz, yz_look_ahead_mask, training) # decoder self attention
o1 = self.ln[0](attn + yz)
attn = self.mh[1].call(o1, xz, xz, xz_pad_mask, training) # decoder + encoder attention
o2 = self.ln[1](attn + o1)
ffn = self.drop(self.ffn.call(o2), training)
o = self.ln[2](ffn + o2)
return o
class Decoder(keras.layers.Layer):
def __init__(self, n_head, model_dim, drop_rate, n_layer):
super().__init__()
self.ls = [DecoderLayer(n_head, model_dim, drop_rate) for _ in range(n_layer)]
def call(self, yz, xz, training, yz_look_ahead_mask, xz_pad_mask):
for l in self.ls:
yz = l.call(yz, xz, training, yz_look_ahead_mask, xz_pad_mask)
return yz
class PositionEmbedding(keras.layers.Layer):
def __init__(self, max_len, model_dim, n_vocab):
super().__init__()
pos = np.arange(max_len)[:, None]
pe = pos / np.power(10000, 2. * np.arange(model_dim)[None, :] / model_dim) # [max_len, dim]
pe[:, 0::2] = np.sin(pe[:, 0::2])
pe[:, 1::2] = np.cos(pe[:, 1::2])
pe = pe[None, :, :] # [1, max_len, model_dim] for batch adding
self.pe = tf.constant(pe, dtype=tf.float32)
self.embeddings = keras.layers.Embedding(
input_dim=n_vocab, output_dim=model_dim, # [n_vocab, dim]
embeddings_initializer=tf.initializers.RandomNormal(0., 0.01),
)
def call(self, x):
x_embed = self.embeddings(x) + self.pe # [n, step, dim]
return x_embed
class Transformer(keras.Model):
def __init__(self, model_dim, max_len, n_layer, n_head, n_vocab, drop_rate=0.1, padding_idx=0):
super().__init__()
self.max_len = max_len
self.padding_idx = padding_idx
self.embed = PositionEmbedding(max_len, model_dim, n_vocab)
self.encoder = Encoder(n_head, model_dim, drop_rate, n_layer)
self.decoder = Decoder(n_head, model_dim, drop_rate, n_layer)
self.o = keras.layers.Dense(n_vocab)
self.cross_entropy = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction="none")
self.opt = keras.optimizers.Adam(0.002)
def call(self, x, y, training=None):
x_embed, y_embed = self.embed(x), self.embed(y)
pad_mask = self._pad_mask(x)
encoded_z = self.encoder.call(x_embed, training, mask=pad_mask)
decoded_z = self.decoder.call(
y_embed, encoded_z, training, yz_look_ahead_mask=self._look_ahead_mask(y), xz_pad_mask=pad_mask)
o = self.o(decoded_z)
return o
def step(self, x, y):
with tf.GradientTape() as tape:
logits = self.call(x, y[:, :-1], training=True)
pad_mask = tf.math.not_equal(y[:, 1:], self.padding_idx)
loss = tf.reduce_mean(tf.boolean_mask(self.cross_entropy(y[:, 1:], logits), pad_mask))
grads = tape.gradient(loss, self.trainable_variables)
self.opt.apply_gradients(zip(grads, self.trainable_variables))
return loss, logits
def _pad_bool(self, seqs):
return tf.math.equal(seqs, self.padding_idx)
def _pad_mask(self, seqs):
mask = tf.cast(self._pad_bool(seqs), tf.float32)
return mask[:, tf.newaxis, tf.newaxis, :] # (n, 1, 1, step)
def _look_ahead_mask(self, seqs):
mask = 1 - tf.linalg.band_part(tf.ones((self.max_len, self.max_len)), -1, 0)
mask = tf.where(self._pad_bool(seqs)[:, tf.newaxis, tf.newaxis, :], 1, mask[tf.newaxis, tf.newaxis, :, :])
return mask # (step, step)
def translate(self, src, v2i, i2v):
src_pad = utils.pad_zero(src, self.max_len)
tgt = utils.pad_zero(np.array([[v2i["<GO>"], ] for _ in range(len(src))]), self.max_len+1)
tgti = 0
x_embed = self.embed(src_pad)
encoded_z = self.encoder.call(x_embed, False, mask=self._pad_mask(src_pad))
while True:
y = tgt[:, :-1]
y_embed = self.embed(y)
decoded_z = self.decoder.call(
y_embed, encoded_z, False, yz_look_ahead_mask=self._look_ahead_mask(y), xz_pad_mask=self._pad_mask(src_pad))
logits = self.o(decoded_z)[:, tgti, :].numpy()
idx = np.argmax(logits, axis=1)
tgti += 1
tgt[:, tgti] = idx
if tgti >= self.max_len:
break
return ["".join([i2v[i] for i in tgt[j, 1:tgti]]) for j in range(len(src))]
@property
def attentions(self):
attentions = {
"encoder": [l.mh.attention.numpy() for l in self.encoder.ls],
"decoder": {
"mh1": [l.mh[0].attention.numpy() for l in self.decoder.ls],
"mh2": [l.mh[1].attention.numpy() for l in self.decoder.ls],
}}
return attentions
def train(model, data, step):
# training
t0 = time.time()
for t in range(step):
bx, by, seq_len = data.sample(64)
bx, by = utils.pad_zero(bx, max_len=MAX_LEN), utils.pad_zero(by, max_len=MAX_LEN + 1)
loss, logits = model.step(bx, by)
if t % 50 == 0:
logits = logits[0].numpy()
t1 = time.time()
print(
"step: ", t,
"| time: %.2f" % (t1 - t0),
"| loss: %.4f" % loss.numpy(),
"| target: ", "".join([data.i2v[i] for i in by[0, 1:10]]),
"| inference: ", "".join([data.i2v[i] for i in np.argmax(logits, axis=1)[:10]]),
)
t0 = t1
os.makedirs("./visual/models/transformer", exist_ok=True)
model.save_weights("./visual/models/transformer/model.ckpt")
os.makedirs("./visual/tmp", exist_ok=True)
with open("./visual/tmp/transformer_v2i_i2v.pkl", "wb") as f:
pickle.dump({"v2i": data.v2i, "i2v": data.i2v}, f)
def export_attention(model, data, name="transformer"):
with open("./visual/tmp/transformer_v2i_i2v.pkl", "rb") as f:
dic = pickle.load(f)
model.load_weights("./visual/models/transformer/model.ckpt")
bx, by, seq_len = data.sample(32)
model.translate(bx, dic["v2i"], dic["i2v"])
attn_data = {
"src": [[data.i2v[i] for i in bx[j]] for j in range(len(bx))],
"tgt": [[data.i2v[i] for i in by[j]] for j in range(len(by))],
"attentions": model.attentions}
path = "./visual/tmp/%s_attention_matrix.pkl" % name
os.makedirs(os.path.dirname(path), exist_ok=True)
with open(path, "wb") as f:
pickle.dump(attn_data, f)
if __name__ == "__main__":
utils.set_soft_gpu(True)
d = utils.DateData(4000)
print("Chinese time order: yy/mm/dd ", d.date_cn[:3], "\nEnglish time order: dd/M/yyyy ", d.date_en[:3])
print("vocabularies: ", d.vocab)
print("x index sample: \n{}\n{}".format(d.idx2str(d.x[0]), d.x[0]),
"\ny index sample: \n{}\n{}".format(d.idx2str(d.y[0]), d.y[0]))
m = Transformer(MODEL_DIM, MAX_LEN, N_LAYER, N_HEAD, d.num_word, DROP_RATE)
train(m, d, step=800)
export_attention(m, d)