-
Notifications
You must be signed in to change notification settings - Fork 313
/
Copy pathGPT.py
143 lines (122 loc) · 5.88 KB
/
GPT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
# [Improving Language Understanding by Generative Pre-Training](https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf)
import tensorflow as tf
from tensorflow import keras
import utils # this refers to utils.py in my [repo](https://github.com/MorvanZhou/NLP-Tutorials/)
import time
from transformer import Encoder
import pickle
import os
class GPT(keras.Model):
def __init__(self, model_dim, max_len, n_layer, n_head, n_vocab, lr, max_seg=3, drop_rate=0.1, padding_idx=0):
super().__init__()
self.padding_idx = padding_idx
self.n_vocab = n_vocab
self.max_len = max_len
# I think task emb is not necessary for pretraining,
# because the aim of all tasks is to train a universal sentence embedding
# the body encoder is the same across all tasks,
# and different output layer defines different task just like transfer learning.
# finetuning replaces output layer and leaves the body encoder unchanged.
# self.task_emb = keras.layers.Embedding(
# input_dim=n_task, output_dim=model_dim, # [n_task, dim]
# embeddings_initializer=tf.initializers.RandomNormal(0., 0.01),
# )
self.word_emb = keras.layers.Embedding(
input_dim=n_vocab, output_dim=model_dim, # [n_vocab, dim]
embeddings_initializer=tf.initializers.RandomNormal(0., 0.01),
)
self.segment_emb = keras.layers.Embedding(
input_dim=max_seg, output_dim=model_dim, # [max_seg, dim]
embeddings_initializer=tf.initializers.RandomNormal(0., 0.01),
)
self.position_emb = self.add_weight(
name="pos", shape=[1, max_len, model_dim], dtype=tf.float32, # [1, step, dim]
initializer=keras.initializers.RandomNormal(0., 0.01))
self.encoder = Encoder(n_head, model_dim, drop_rate, n_layer)
self.task_mlm = keras.layers.Dense(n_vocab)
self.task_nsp = keras.layers.Dense(2)
self.cross_entropy = keras.losses.SparseCategoricalCrossentropy(from_logits=True, reduction="none")
self.opt = keras.optimizers.Adam(lr)
def call(self, seqs, segs, training=False):
embed = self.input_emb(seqs, segs) # [n, step, dim]
z = self.encoder(embed, training=training, mask=self.mask(seqs)) # [n, step, dim]
mlm_logits = self.task_mlm(z) # [n, step, n_vocab]
nsp_logits = self.task_nsp(tf.reshape(z, [z.shape[0], -1])) # [n, n_cls]
return mlm_logits, nsp_logits
def step(self, seqs, segs, seqs_, nsp_labels):
with tf.GradientTape() as tape:
mlm_logits, nsp_logits = self.call(seqs, segs, training=True)
pad_mask = tf.math.not_equal(seqs_, self.padding_idx)
pred_loss = tf.reduce_mean(tf.boolean_mask(self.cross_entropy(seqs_, mlm_logits), pad_mask))
nsp_loss = tf.reduce_mean(self.cross_entropy(nsp_labels, nsp_logits))
loss = pred_loss + 0.2 * nsp_loss
grads = tape.gradient(loss, self.trainable_variables)
self.opt.apply_gradients(zip(grads, self.trainable_variables))
return loss, mlm_logits
def input_emb(self, seqs, segs):
return self.word_emb(seqs) + self.segment_emb(segs) + self.position_emb # [n, step, dim]
def mask(self, seqs):
"""
abcd--
a011111
b001111
c000111
d000011
-000011
-000011
force head not to see afterward. eg.
a is a embedding for a---
b is a embedding for ab--
c is a embedding for abc-
later, b embedding will + b another embedding from previous residual input to predict c
"""
mask = 1 - tf.linalg.band_part(tf.ones((self.max_len, self.max_len)), -1, 0)
pad = tf.math.equal(seqs, self.padding_idx)
mask = tf.where(pad[:, tf.newaxis, tf.newaxis, :], 1, mask[tf.newaxis, tf.newaxis, :, :])
return mask # (step, step)
@property
def attentions(self):
attentions = {
"encoder": [l.mh.attention.numpy() for l in self.encoder.ls],
}
return attentions
def train(model, data, step=10000, name="gpt"):
t0 = time.time()
for t in range(step):
seqs, segs, xlen, nsp_labels = data.sample(16)
loss, pred = model.step(seqs[:, :-1], segs[:, :-1], seqs[:, 1:], nsp_labels)
if t % 100 == 0:
pred = pred[0].numpy().argmax(axis=1)
t1 = time.time()
print(
"\n\nstep: ", t,
"| time: %.2f" % (t1 - t0),
"| loss: %.3f" % loss.numpy(),
"\n| tgt: ", " ".join([data.i2v[i] for i in seqs[0, 1:][:xlen[0].sum()+1]]),
"\n| prd: ", " ".join([data.i2v[i] for i in pred[:xlen[0].sum()+1]]),
)
t0 = t1
os.makedirs("./visual/models/%s" % name, exist_ok=True)
model.save_weights("./visual/models/%s/model.ckpt" % name)
def export_attention(model, data, name="gpt"):
model.load_weights("./visual/models/%s/model.ckpt" % name)
# save attention matrix for visualization
seqs, segs, xlen, nsp_labels = data.sample(32)
model.call(seqs[:, :-1], segs[:, :-1], False)
data = {"src": [[data.i2v[i] for i in seqs[j]] for j in range(len(seqs))], "attentions": model.attentions}
path = "./visual/tmp/%s_attention_matrix.pkl" % name
os.makedirs(os.path.dirname(path), exist_ok=True)
with open(path, "wb") as f:
pickle.dump(data, f)
if __name__ == "__main__":
utils.set_soft_gpu(True)
MODEL_DIM = 256
N_LAYER = 4
LEARNING_RATE = 1e-4
d = utils.MRPCData("./MRPC", 2000)
print("num word: ", d.num_word)
m = GPT(
model_dim=MODEL_DIM, max_len=d.max_len - 1, n_layer=N_LAYER, n_head=4, n_vocab=d.num_word,
lr=LEARNING_RATE, max_seg=d.num_seg, drop_rate=0.2, padding_idx=d.pad_id)
train(m, d, step=5000, name="gpt")
export_attention(m, d, name="gpt")