-
Notifications
You must be signed in to change notification settings - Fork 313
/
Copy pathELMo.py
111 lines (98 loc) · 4.2 KB
/
ELMo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
# [Deep contextualized word representations](https://arxiv.org/pdf/1802.05365.pdf)
from tensorflow import keras
import tensorflow as tf
import utils # this refers to utils.py in my [repo](https://github.com/MorvanZhou/NLP-Tutorials/)
import time
import os
class ELMo(keras.Model):
def __init__(self, v_dim, emb_dim, units, n_layers, lr):
super().__init__()
self.n_layers = n_layers
self.units = units
# encoder
self.word_embed = keras.layers.Embedding(
input_dim=v_dim, output_dim=emb_dim, # [n_vocab, emb_dim]
embeddings_initializer=keras.initializers.RandomNormal(0., 0.001),
mask_zero=True,
)
# forward lstm
self.fs = [keras.layers.LSTM(units, return_sequences=True) for _ in range(n_layers)]
self.f_logits = keras.layers.Dense(v_dim)
# backward lstm
self.bs = [keras.layers.LSTM(units, return_sequences=True, go_backwards=True) for _ in range(n_layers)]
self.b_logits = keras.layers.Dense(v_dim)
self.cross_entropy1 = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
self.cross_entropy2 = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
self.opt = keras.optimizers.Adam(lr)
def call(self, seqs):
embedded = self.word_embed(seqs) # [n, step, dim]
"""
0123 forward
1234 forward predict
1234 backward
0123 backward predict
"""
mask = self.word_embed.compute_mask(seqs)
fxs, bxs = [embedded[:, :-1]], [embedded[:, 1:]]
for fl, bl in zip(self.fs, self.bs):
fx = fl(
fxs[-1], mask=mask[:, :-1], initial_state=fl.get_initial_state(fxs[-1])
) # [n, step-1, dim]
bx = bl(
bxs[-1], mask=mask[:, 1:], initial_state=bl.get_initial_state(bxs[-1])
) # [n, step-1, dim]
fxs.append(fx) # predict 1234
bxs.append(tf.reverse(bx, axis=[1])) # predict 0123
return fxs, bxs
def step(self, seqs):
with tf.GradientTape() as tape:
fxs, bxs = self.call(seqs)
fo, bo = self.f_logits(fxs[-1]), self.b_logits(bxs[-1])
loss = (self.cross_entropy1(seqs[:, 1:], fo) + self.cross_entropy2(seqs[:, :-1], bo))/2
grads = tape.gradient(loss, self.trainable_variables)
self.opt.apply_gradients(zip(grads, self.trainable_variables))
return loss, (fo, bo)
def get_emb(self, seqs):
fxs, bxs = self.call(seqs)
xs = [
tf.concat((fxs[0][:, 1:, :], bxs[0][:, :-1, :]), axis=2).numpy() # from word embedding
] + [
tf.concat((f[:, :-1, :], b[:, 1:, :]), axis=2).numpy() for f, b in zip(fxs[1:], bxs[1:])] # from sentence embedding
for x in xs:
print("layers shape=", x.shape)
return xs
def train(model, data, step):
t0 = time.time()
for t in range(step):
seqs = data.sample(BATCH_SIZE)
loss, (fo, bo) = model.step(seqs)
if t % 80 == 0:
fp = fo[0].numpy().argmax(axis=1)
bp = bo[0].numpy().argmax(axis=1)
t1 = time.time()
print(
"\n\nstep: ", t,
"| time: %.2f" % (t1 - t0),
"| loss: %.3f" % loss.numpy(),
"\n| tgt: ", " ".join([data.i2v[i] for i in seqs[0] if i != data.pad_id]),
"\n| f_prd: ", " ".join([data.i2v[i] for i in fp if i != data.pad_id]),
"\n| b_prd: ", " ".join([data.i2v[i] for i in bp if i != data.pad_id]),
)
t0 = t1
os.makedirs("./visual/models/elmo", exist_ok=True)
model.save_weights("./visual/models/elmo/model.ckpt")
def export_w2v(model, data):
model.load_weights("./visual/models/elmo/model.ckpt")
emb = model.get_emb(data.sample(4))
print(emb)
if __name__ == "__main__":
utils.set_soft_gpu(True)
UNITS = 256
N_LAYERS = 2
BATCH_SIZE = 16
LEARNING_RATE = 2e-3
d = utils.MRPCSingle("./MRPC", rows=2000)
print("num word: ", d.num_word)
m = ELMo(d.num_word, emb_dim=UNITS, units=UNITS, n_layers=N_LAYERS, lr=LEARNING_RATE)
train(m, d, 10000)
export_w2v(m, d)