-
Notifications
You must be signed in to change notification settings - Fork 313
/
Copy pathBERT.py
145 lines (121 loc) · 5.82 KB
/
BERT.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/pdf/1810.04805.pdf)
import numpy as np
import tensorflow as tf
import utils # this refers to utils.py in my [repo](https://github.com/MorvanZhou/NLP-Tutorials/)
import time
from GPT import GPT
import os
import pickle
class BERT(GPT):
def __init__(self, model_dim, max_len, n_layer, n_head, n_vocab, lr, max_seg=3, drop_rate=0.1, padding_idx=0):
super().__init__(model_dim, max_len, n_layer, n_head, n_vocab, lr, max_seg, drop_rate, padding_idx)
# I think task emb is not necessary for pretraining,
# because the aim of all tasks is to train a universal sentence embedding
# the body encoder is the same across all tasks,
# and different output layer defines different task just like transfer learning.
# finetuning replaces output layer and leaves the body encoder unchanged.
# self.task_emb = keras.layers.Embedding(
# input_dim=n_task, output_dim=model_dim, # [n_task, dim]
# embeddings_initializer=tf.initializers.RandomNormal(0., 0.01),
# )
def step(self, seqs, segs, seqs_, loss_mask, nsp_labels):
with tf.GradientTape() as tape:
mlm_logits, nsp_logits = self.call(seqs, segs, training=True)
mlm_loss_batch = tf.boolean_mask(self.cross_entropy(seqs_, mlm_logits), loss_mask)
mlm_loss = tf.reduce_mean(mlm_loss_batch)
nsp_loss = tf.reduce_mean(self.cross_entropy(nsp_labels, nsp_logits))
loss = mlm_loss + 0.2 * nsp_loss
grads = tape.gradient(loss, self.trainable_variables)
self.opt.apply_gradients(zip(grads, self.trainable_variables))
return loss, mlm_logits
def mask(self, seqs):
mask = tf.cast(tf.math.equal(seqs, self.padding_idx), tf.float32)
return mask[:, tf.newaxis, tf.newaxis, :] # [n, 1, 1, step]
def _get_loss_mask(len_arange, seq, pad_id):
rand_id = np.random.choice(len_arange, size=max(2, int(MASK_RATE * len(len_arange))), replace=False)
loss_mask = np.full_like(seq, pad_id, dtype=np.bool)
loss_mask[rand_id] = True
return loss_mask[None, :], rand_id
def do_mask(seq, len_arange, pad_id, mask_id):
loss_mask, rand_id = _get_loss_mask(len_arange, seq, pad_id)
seq[rand_id] = mask_id
return loss_mask
def do_replace(seq, len_arange, pad_id, word_ids):
loss_mask, rand_id = _get_loss_mask(len_arange, seq, pad_id)
seq[rand_id] = np.random.choice(word_ids, size=len(rand_id))
return loss_mask
def do_nothing(seq, len_arange, pad_id):
loss_mask, _ = _get_loss_mask(len_arange, seq, pad_id)
return loss_mask
def random_mask_or_replace(data, arange, batch_size):
seqs, segs, xlen, nsp_labels = data.sample(batch_size)
seqs_ = seqs.copy()
p = np.random.random()
if p < 0.7:
# mask
loss_mask = np.concatenate(
[do_mask(
seqs[i],
np.concatenate((arange[:xlen[i, 0]], arange[xlen[i, 0] + 1:xlen[i].sum() + 1])),
data.pad_id,
data.v2i["<MASK>"]) for i in range(len(seqs))], axis=0)
elif p < 0.85:
# do nothing
loss_mask = np.concatenate(
[do_nothing(
seqs[i],
np.concatenate((arange[:xlen[i, 0]], arange[xlen[i, 0] + 1:xlen[i].sum() + 1])),
data.pad_id) for i in range(len(seqs))], axis=0)
else:
# replace
loss_mask = np.concatenate(
[do_replace(
seqs[i],
np.concatenate((arange[:xlen[i, 0]], arange[xlen[i, 0] + 1:xlen[i].sum() + 1])),
data.pad_id,
data.word_ids) for i in range(len(seqs))], axis=0)
return seqs, segs, seqs_, loss_mask, xlen, nsp_labels
def train(model, data, step=10000, name="bert"):
t0 = time.time()
arange = np.arange(0, data.max_len)
for t in range(step):
seqs, segs, seqs_, loss_mask, xlen, nsp_labels = random_mask_or_replace(data, arange, 16)
loss, pred = model.step(seqs, segs, seqs_, loss_mask, nsp_labels)
if t % 100 == 0:
pred = pred[0].numpy().argmax(axis=1)
t1 = time.time()
print(
"\n\nstep: ", t,
"| time: %.2f" % (t1 - t0),
"| loss: %.3f" % loss.numpy(),
"\n| tgt: ", " ".join([data.i2v[i] for i in seqs[0][:xlen[0].sum()+1]]),
"\n| prd: ", " ".join([data.i2v[i] for i in pred[:xlen[0].sum()+1]]),
"\n| tgt word: ", [data.i2v[i] for i in seqs_[0]*loss_mask[0] if i != data.v2i["<PAD>"]],
"\n| prd word: ", [data.i2v[i] for i in pred*loss_mask[0] if i != data.v2i["<PAD>"]],
)
t0 = t1
os.makedirs("./visual/models/%s" % name, exist_ok=True)
model.save_weights("./visual/models/%s/model.ckpt" % name)
def export_attention(model, data, name="bert"):
model.load_weights("./visual/models/%s/model.ckpt" % name)
# save attention matrix for visualization
seqs, segs, xlen, nsp_labels = data.sample(32)
model.call(seqs, segs, False)
data = {"src": [[data.i2v[i] for i in seqs[j]] for j in range(len(seqs))], "attentions": model.attentions}
path = "./visual/tmp/%s_attention_matrix.pkl" % name
os.makedirs(os.path.dirname(path), exist_ok=True)
with open(path, "wb") as f:
pickle.dump(data, f)
if __name__ == "__main__":
utils.set_soft_gpu(True)
MODEL_DIM = 256
N_LAYER = 4
LEARNING_RATE = 1e-4
MASK_RATE = 0.15
d = utils.MRPCData("./MRPC", 2000)
print("num word: ", d.num_word)
m = BERT(
model_dim=MODEL_DIM, max_len=d.max_len, n_layer=N_LAYER, n_head=4, n_vocab=d.num_word,
lr=LEARNING_RATE, max_seg=d.num_seg, drop_rate=0.2, padding_idx=d.v2i["<PAD>"])
train(m, d, step=10000, name="bert")
export_attention(m, d, "bert")