@@ -336,6 +336,8 @@ def recommend_u2i(
336336 Distance .DOT ,
337337 user_embs_np [user_ids ], # [n_rec_users, n_factors]
338338 item_embs_np , # [n_items + n_item_extra_tokens, n_factors]
339+ num_threads = recommend_n_threads ,
340+ use_gpu = recommend_use_gpu_ranking and HAS_CUDA ,
339341 )
340342
341343 # TODO: We should test if torch `topk`` is faster when `filter_viewed`` is ``False``
@@ -344,8 +346,6 @@ def recommend_u2i(
344346 k = k ,
345347 filter_pairs_csr = ui_csr_for_filter , # [n_rec_users x n_items + n_item_extra_tokens]
346348 sorted_object_whitelist = sorted_item_ids_to_recommend , # model_internal
347- num_threads = recommend_n_threads ,
348- use_gpu = recommend_use_gpu_ranking and HAS_CUDA ,
349349 )
350350 all_user_ids = user_ids [user_ids_indices ]
351351 return all_user_ids , all_reco_ids , all_scores
@@ -371,12 +371,12 @@ def recommend_i2i(
371371 self .i2i_dist ,
372372 item_embs , # [n_items + n_item_extra_tokens, n_factors]
373373 item_embs , # [n_items + n_item_extra_tokens, n_factors]
374+ num_threads = recommend_n_threads ,
375+ use_gpu = recommend_use_gpu_ranking and HAS_CUDA ,
374376 )
375377 return ranker .rank (
376378 subject_ids = target_ids , # model internal
377379 k = k ,
378380 filter_pairs_csr = None ,
379381 sorted_object_whitelist = sorted_item_ids_to_recommend , # model internal
380- num_threads = recommend_n_threads ,
381- use_gpu = recommend_use_gpu_ranking and HAS_CUDA ,
382382 )
0 commit comments