-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapi.py
174 lines (154 loc) · 5.07 KB
/
api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
from fastapi import FastAPI, Request
import torch
import commons
import utils
import uvicorn
import json
from models import SynthesizerTrn
from text.symbols import symbols
from text import cleaned_text_to_sequence, get_bert
from text.cleaner import clean_text
import os
import sys
import signal
from io import BytesIO
from av import open as avopen
from scipy.io import wavfile
import base64
from numba.core.errors import NumbaWarning
import warnings
warnings.simplefilter("ignore", category=NumbaWarning)
import logging
logging.getLogger("numba").setLevel(logging.WARNING)
current_dir = os.path.dirname(os.path.abspath(__file__))
app = FastAPI()
# Load Generator
hps = utils.get_hparams_from_file("./configs/config.json")
device = "cuda:0" if torch.cuda.is_available() else "cpu"
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
n_speakers=hps.data.n_speakers,
**hps.model,
).to(device)
_ = net_g.eval()
_ = utils.load_checkpoint("logs/as/G_57000.pth", net_g, None, skip_optimizer=True)
def get_text(text, language_str, hps):
norm_text, phone, tone, word2ph = clean_text(text, language_str)
phone, tone, language = cleaned_text_to_sequence(phone, tone, language_str)
if hps.data.add_blank:
phone = commons.intersperse(phone, 0)
tone = commons.intersperse(tone, 0)
language = commons.intersperse(language, 0)
for i in range(len(word2ph)):
word2ph[i] = word2ph[i] * 2
word2ph[0] += 1
bert = get_bert(norm_text, word2ph, language_str, device)
del word2ph
assert bert.shape[-1] == len(phone), phone
if language_str == "ZH":
bert = bert
ja_bert = torch.zeros(768, len(phone))
elif language_str == "JA":
ja_bert = bert
bert = torch.zeros(1024, len(phone))
else:
bert = torch.zeros(1024, len(phone))
ja_bert = torch.zeros(768, len(phone))
assert bert.shape[-1] == len(
phone
), f"Bert seq len {bert.shape[-1]} != {len(phone)}"
phone = torch.LongTensor(phone)
tone = torch.LongTensor(tone)
language = torch.LongTensor(language)
return bert, ja_bert, phone, tone, language
def infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, sid, language):
bert, ja_bert, phones, tones, lang_ids = get_text(text, language, hps)
with torch.no_grad():
x_tst = phones.to(device).unsqueeze(0)
tones = tones.to(device).unsqueeze(0)
lang_ids = lang_ids.to(device).unsqueeze(0)
bert = bert.to(device).unsqueeze(0)
ja_bert = ja_bert.to(device).unsqueeze(0)
x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
speakers = torch.LongTensor([hps.data.spk2id[sid]]).to(device)
audio = (
net_g.infer(
x_tst,
x_tst_lengths,
speakers,
tones,
lang_ids,
bert,
ja_bert,
sdp_ratio=sdp_ratio,
noise_scale=noise_scale,
noise_scale_w=noise_scale_w,
length_scale=length_scale,
)[0][0, 0]
.data.cpu()
.float()
.numpy()
)
return audio
def replace_punctuation(text, i=2):
punctuation = ",。?!"
for char in punctuation:
text = text.replace(char, char * i)
return text
def wav2(i, o, format):
inp = avopen(i, "rb")
out = avopen(o, "wb", format=format)
if format == "ogg":
format = "libvorbis"
ostream = out.add_stream(format)
for frame in inp.decode(audio=0):
for p in ostream.encode(frame):
out.mux(p)
for p in ostream.encode(None):
out.mux(p)
out.close()
inp.close()
def restart():
python = sys.executable
os.execl(python, python, * sys.argv)
@app.post("/")
async def tts_endpoint(request: Request):
global net_g, hps, speakers
json_post_raw = await request.json()
command = json_post_raw.get("command")
text = json_post_raw.get("text").replace("/n", "")
speaker = json_post_raw.get("speaker", "suijiSUI")
language = json_post_raw.get("language", "ZH")
sdp_ratio = json_post_raw.get("sdp_ratio", 0.2)
noise_scale = json_post_raw.get("noise_scale", 0.5)
noise_scale_w = json_post_raw.get("noise_scale_w", 0.6)
length_scale = json_post_raw.get("length_scale", 1.2)
try:
if command == "/unload":
restart()
elif command == "/exit":
os.kill(os.getpid(), signal.SIGTERM)
if text == "":
return {"code": 400, "error": "Empty text"}
if speaker == "":
return {"code": 400, "error": "No speaker"}
if language not in ("JP", "ZH"):
return "Invalid language"
if length_scale >= 2:
return {"code": 400, "error": "Too big length_scale"}
if len(text) >= 250:
return {"code": 400, "error": "Too long text(len(text)>=250)"}
except:
return {"code": 400, "error": "Invalid parameter"}
with torch.no_grad():
audio = infer(text, sdp_ratio, noise_scale, noise_scale_w, length_scale, speaker, language)
wavBytes = None
with BytesIO() as wav:
wavfile.write(wav, hps.data.sampling_rate, audio)
wavBytes = wav.getvalue()
torch.cuda.empty_cache()
return {"code": 0, "output": base64.b64encode(wavBytes).decode("utf-8"), "error": ""}
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=9876, workers=1)