-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathmetrics.py
691 lines (539 loc) · 24.4 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
import os
import json
import numpy as np
import torch
class Metrics(object):
def __init__(self, *args, **kwargs):
"""
Compute accuracy metrics from this Metrics class
Args:
acc_metric (String): String used to indicate selected accuracy metric
Return:
None
"""
self.metric_type = kwargs['acc_metric']
if self.metric_type == 'Accuracy':
self.metric_object = Accuracy(*args, **kwargs)
elif self.metric_type == 'AveragePrecision':
self.metric_object = AveragePrecision(*args, **kwargs)
elif self.metric_type == 'mAP':
self.metric_object = MAP(*args, **kwargs)
elif self.metric_type == 'SSD_AP':
self.metric_object = SSD_AP(*args, **kwargs)
elif self.metric_type == 'Box_Accuracy':
self.metric_object = Box_Accuracy(*args, **kwargs)
else:
self.metric_type = None
def get_accuracy(self, predictions, targets, **kwargs):
"""
Return accuracy from selected metric type
Args:
predictions: model predictions
targets: ground truth or targets
"""
if self.metric_type == None:
return -1
else:
return self.metric_object.get_accuracy(predictions, targets, **kwargs)
class Accuracy(object):
"""
Standard accuracy computation. # of correct cases/# of total cases
"""
def __init__(self, *args, **kwargs):
self.correct = 0.
self.total = 0.
def get_accuracy(self, predictions, data):
"""
Args:
predictions (Tensor, shape [N,*])
data (dictionary):
- labels (Tensor, shape [N,*])
Return:
Accuracy # of correct case/ # of total cases
"""
targets = data['labels']
assert (predictions.shape[0] == targets.shape[0])
targets = targets.detach().cpu().numpy()
predictions = predictions.detach().cpu().numpy()
if len(targets.shape) == 2 and len(predictions.shape) == 2:
self.correct += np.sum(np.argmax(predictions,1) == targets[:, -1])
self.total += predictions.shape[0]
else:
self.correct += np.sum(np.argmax(predictions,1) == targets[:, -1])
self.total += predictions.shape[0]
# END IF
return self.correct/self.total
class IOU():
"""
Intersection-over-union between one prediction bounding box
and plausible ground truth bounding boxes
"""
def __init__(self, *args, **kwargs):
pass
def intersect(self, box_p, box_t):
"""
Intersection area between predicted bounding box and
all ground truth bounding boxes
Args:
box_p (Tensor, shape [4]): prediction bounding box, coordinate format [x1, y1, x2, y2]
box_t (Tensor, shape [N,4]): target bounding boxes
Return:
intersect area (Tensor, shape [N]): intersect_area for all target bounding boxes
"""
x_left = torch.max(box_p[0], box_t[:,0])
y_top = torch.max(box_p[1], box_t[:,1])
x_right = torch.min(box_p[2], box_t[:,2])
y_bottom = torch.min(box_p[3], box_t[:,3])
width = torch.clamp(x_right - x_left, min=0)
height = torch.clamp(y_bottom - y_top, min=0)
intersect_area = width * height
return intersect_area
def iou(self, box_p, box_t):
"""
Performs intersection-over-union
Args:
box_p (Tensor, shape [4]): prediction bounding box, coordinate format [x1, y1, x2, y2]
box_t (Tensor, shape [N,4]): target bounding boxes
Return:
overlap (Tensor, shape [1]): max overlap
ind (Tensor, shape [1]): index of bounding box with largest overlap
"""
intersect_area = self.intersect(box_p, box_t)
box_p_area = (box_p[2] - box_p[0]) * (box_p[3] - box_p[1])
box_t_area = (box_t[:,2] - box_t[:,0]) * (box_t[:,3] - box_t[:,1])
union = box_p_area + box_t_area - intersect_area
overlap = torch.max(intersect_area/union)
ind = torch.argmax(intersect_area/union)
assert overlap >= 0.0
assert overlap <= 1.0
return overlap, ind
def get_accuracy(self, prediction, targets):
"""
Args:
prediction (Tensor, shape [4]): prediction bounding box, coordinate format [x1, y1, x2, y2]
targets (Tensor, shape [N,4]): target bounding boxes
Return:
iou (Tensor, shape[1]): Highest iou amongst target bounding boxes
ind (Tensor, shape[1]): Index of target bounding box with highest score
"""
iou_score, ind = self.iou(prediction, targets)
return iou_score, ind
class AveragePrecision():
"""
Average Precision is computed per class and then averaged across all classes
"""
def __init__(self, threshold=0.5, num_points=101, *args, **kwargs):
"""
Compute Average Precision (AP)
Args:
threshold (float): iou threshold
num_points (int): number of points to average for the interpolated AP calculation
Return:
None
"""
self.threshold = threshold
self.num_points = num_points
self.IOU = IOU(average=False)
self.result_dir = kwargs['result_dir']
final_shape = kwargs['final_shape']
#assuming model predictions are normalized between 0-1
self.scale = torch.Tensor([1, final_shape[0], final_shape[1], final_shape[0], final_shape[1]]) #[1, height, width, height, width]
self.ndata = kwargs['ndata']
self.count = 0
def update_threshold(self, threshold):
self.threshold = threshold
def compute_class_ap(self, tp, fp, npos):
"""
Args:
tp (Tensor, shape [N*D]): cumulative sum of true positive detections
fp (Tensor, shape [N*D]): cumulative sum of false positive detections
npos (Tensor, int): actual positives (from ground truth)
Return:
ap (Tensor, float): average precision calculation
"""
#Values for precision-recall curve
rc = tp/npos
pr = tp / torch.clamp(tp + fp, min=torch.finfo(torch.float).eps)
rc_values = torch.linspace(0,1,self.num_points) #sampled recall points for n-point precision-recall curve
#The interpotaled P-R curve will take on the max precision value to the right at each recall
ap = 0.
for t in rc_values:
if torch.sum(rc >= t) == 0:
p = 0
else:
p = torch.max(pr[rc >= t])
ap = ap + p/self.num_points
return ap
def get_AP(self, predictions, targets):
"""
Args:
predictions (Tensor, shape [N,C,D,5]): prediction bounding boxes, coordinate format [confidence, x1, y1, x2, y2]
targets (Tensor, shape [N,C,D_,4]): ground truth bounding boxes
C: num of classes + 1 (0th class is background class, not included in calculation)
D: predicted detections
D_: ground truth detections
Return:
avg_ap (Tensor, float): mean ap across all classes
"""
N,C,D,_ = predictions.shape
_,_,D_,_ = targets.shape
ap = []
mask_g = torch.zeros(N,C,D_)
for c in range(1,C): #skip background class (c=0)
#Sort predictions in descending order, by confidence value
pred = predictions[:,c].contiguous().view(N*D,-1)
idx = pred[:,0].argsort(descending=True)
pred = pred[idx]
img_labels = torch.arange(0,N).unsqueeze(1).repeat(1,D).view(N*D)
img_labels = img_labels[idx]
tp = []
fp = []
mask = torch.zeros(N,D_,dtype=torch.uint8)
class_targets = targets[:,c]
for i in range(class_targets.shape[0]):
for j in range(class_targets.shape[1]):
if not torch.equal(class_targets[i,j], torch.Tensor([-1,-1,-1,-1])):
mask[i,j] = 1
npos = torch.sum(mask)
for n, p in zip(img_labels, pred[:,1:]): #get iou for all detections
trgts = targets[n,c]
gt_mask = mask[n]
exists = torch.sum(gt_mask) > 0 #gt exists on this image
if not torch.equal(p, torch.Tensor([0,0,0,0])):
if exists:
score, ind = self.IOU.get_accuracy(p,trgts[gt_mask])
else:
score = 0.0
if score > self.threshold:
if mask_g[n,c,ind] == 1: #duplicate detection (false positive)
tp.append(0.)
fp.append(1.)
else: #true positive
tp.append(1.)
fp.append(0.)
mask_g[n,c,ind] = 1
else: #below threshold (false positive)
tp.append(0.)
fp.append(1.)
else:
break
tp = torch.cumsum(torch.Tensor(tp), dim=0)
fp = torch.cumsum(torch.Tensor(fp), dim=0)
ap.append(self.compute_class_ap(tp, fp, npos)) #add class Average Precision
#Average across all classes
avg_ap = torch.mean(torch.Tensor(ap))
return avg_ap
def get_accuracy(self, detections, data):
"""
Args:
detections (Tensor, shape [N,C,D,5]): predicted detections, each item [confidence, x1, y1, x2, y2]
data: (dictionary)
- labels (Tensor, shape [N,T,D_,5]):, each item [x1, y1, x2, y3, class]
Return:
Computes Average Precision
"""
gt = data['labels'].squeeze(1)
detections = detections.data
N,C,D,_ = detections.shape
_,D_,_ = gt.shape
if self.count == 0:
self.predictions = -1*torch.ones(self.ndata,C,D,5)
self._targets = -1*torch.ones(self.ndata,D_,5)
self.predictions[self.count:self.count+N] = detections * self.scale
self._targets[self.count:self.count+N] = gt
self.count += N
#Only compute Average Precision after accumulating all predictions
if self.count < self.ndata:
return -1
self.targets = -1*torch.ones(self.ndata,C,D_,4)
for n, trgt in enumerate(self._targets):
for d_ in range(D_):
c = trgt[d_,-1].long() + 1 #c=0 is now the background class
if c != 0:
self.targets[n,c,d_] = trgt[d_,:4]
return self.get_AP(self.predictions, self.targets)
class MAP():
def __init__(self, threshold=torch.linspace(0.5,0.95,10), num_points=101, *args, **kwargs):
"""
(COCO) Mean average precision
Args:
threshold (Tensor, shape[10]): Calculate AP at each of these threshold values
num_points (float): number of points to average for the interpolated AP calculation
"""
self.threshold = threshold
self.IOU = IOU(average=False)
self.AP = AveragePrecision(num_points=num_points, *args, **kwargs)
self.result_dir = kwargs['result_dir']
final_shape = kwargs['final_shape']
#assuming model predictions are normalized between 0-1
self.scale = torch.Tensor([1, final_shape[0], final_shape[1], final_shape[0], final_shape[1]]) #[1, height, width, height, width]
self.ndata = kwargs['ndata']
self.count = 0
def get_mAP(self, predictions, targets):
"""
Args:
predictions (Tensor, shape [N,C,D,5]): prediction bounding boxes, coordinate format [confidence, x1, y1, x2, y2]
targets (Tensor, shape [N,C,D_,4]): ground truth bounding boxes
C: num of classes + 1 (0th class is background class, not included in calculation)
D: predicted detections
D_: ground truth detections
Return:
Returns mAP score
"""
AP_scores = torch.zeros(self.threshold.shape)
for n,t in enumerate(self.threshold):
self.AP.update_threshold(t)
AP_scores[n] = self.AP.get_AP(predictions, targets)
return torch.mean(AP_scores)
def get_accuracy(self, detections, data):
"""
Args:
detections (Tensor, shape [N,C,D,5]): predicted detections, each item [confidence, x1, y1, x2, y2]
data: (dictionary)
- labels (Tensor, shape [N,T,D_,5]):, each item [x1, y1, x2, y3, class]
Return:
Returns mAP score
"""
gt = data['labels'].squeeze(1)
detections = detections.data
N,C,D,_ = detections.shape
_,D_,_ = gt.shape
if self.count == 0:
self.predictions = -1*torch.ones(self.ndata,C,D,5)
self._targets = -1*torch.ones(self.ndata,D_,5)
self.predictions[self.count:self.count+N] = detections * self.scale
self._targets[self.count:self.count+N] = gt
self.count += N
#Only compute Mean Average Precision after accumulating all predictions
if self.count < self.ndata:
return -1
self.targets = -1*torch.ones(self.ndata,C,D_,4)
for n, trgt in enumerate(self._targets):
for d_ in range(D_):
c = trgt[d_,-1].long() + 1 #c=0 is now the background class
if c != 0:
self.targets[n,c,d_] = trgt[d_,:4]
return self.get_mAP(self.predictions, self.targets)
class AverageRecall():
#TODO: Incomplete
def __init__(self, threshold=0.5, det=None, *args, **kwargs):
"""
Compute Average Recall (AR)
Args:
threshold: (float)
det: max number of detections per image (optional)
"""
self.threshold = threshold
self.det = det
self.IOU = IOU()
def get_recall(self, predictions, targets, targets_mask):
"""
Args:
predictions: shape [N,C,4], coordinate format [x1, y1, x2, y2]
targets: shape [N,C,4]
targets_mask: binary mask, shape [N,C]
"""
iou_values = self.IOU.get_accuracy(predictions, targets) #[N,C]
TP = torch.sum((iou_values * targets_mask) >= self.threshold).float()
FN = torch.sum((iou_values * targets_mask) < self.threshold).float()
if self.det:
return TP/self.det
else:
return TP/(TP+FN)
def get_accuracy(self, predictions, targets):
if len(targets.shape) > 2:
n,c,_ = targets.shape
targets_mask = torch.ones((n,c))
else: #Input shape of [N,4] is also acceptable
n,_ = targets.shape
targets_mask = torch.ones(n)
return self.get_recall(predictions, targets, targets_mask)
class SSD_AP(AveragePrecision):
"""
Compute Average Precision from the output of the SSD model
Accumulates all predictions before computing AP
"""
def __init__(self, threshold=0.5, num_points=11, *args, **kwargs):
"""
Compute Average Precision (AP)
Args:
threshold (float): iou threshold
num_points (int): number of points to average for the interpolated AP calculation
final_shape (list) : [height, width] of input given to CNN
result_dir (String): save detections to this location
ndata (int): total number of datapoints in dataset
Return:
None
"""
super(SSD_AP, self).__init__(threshold=threshold, num_points=num_points, *args, **kwargs)
def get_accuracy(self, detections, data):
"""
Args:
detections (Tensor, shape [N,C,D,5]): predicted detections, each item [confidence, x1, y1, x2, y2]
data: (dictionary)
- labels (Tensor, shape [N,T,D_,5]):, each item [x1, y1, x2, y3, class]
- diff_labels (Tensor, shape [N,T,D_]):, difficult labels, each item (True or False)
Return:
Average Precision for SSD model
"""
gt = data['labels'].squeeze(1)
diff = data['diff_labels'].squeeze(1)
detections = detections.data
N,C,D,_ = detections.shape
_,D_,_ = gt.shape
if self.count == 0:
self.predictions = -1*torch.ones(self.ndata,C,D,5)
self._targets = -1*torch.ones(self.ndata,D_,5)
self._diff = torch.zeros(self.ndata,D_, dtype=torch.long)
self.predictions[self.count:self.count+N] = detections * self.scale
self._targets[self.count:self.count+N] = gt
self._diff[self.count:self.count+N] = diff
self.count += N
#Only compute Average Precision after accumulating all predictions
if self.count < self.ndata:
return -1
self.targets = -1*torch.ones(self.ndata,C,D_,4)
for n, trgt in enumerate(self._targets):
for d_ in range(D_):
c = trgt[d_,-1].long() + 1 #c=0 is now the background class
c = c * (1-self._diff[n,d_]) #skip difficult labels during calculation
if c != 0:
self.targets[n,c,d_] = trgt[d_,:4]
return self.get_AP(self.predictions, self.targets)
class Box_Accuracy():
"""
Box accuracy computation for YC2-BB model.
Adapted from: https://github.com/MichiganCOG/Video-Grounding-from-Text/blob/master/tools/test_util.py
Args:
accu_thres: (float) iou threshold
fps: (int) frames per second video annotations were sampled at
load_type: (String) data split, only validation has publicly available annotations
ndata (int): total number of datapoints in dataset
"""
def __init__(self, *args, **kwargs):
from collections import defaultdict
self.result_dir = os.path.join(kwargs['result_dir'], 'submission_yc2_bb.json')
self.thresh = kwargs['accu_thresh']
self.fps = kwargs['fps']
self.debug = kwargs['debug']
self.test_mode = 1 if kwargs['load_type'] == 'test' else 0
self.IOU = IOU()
self.ba_score = defaultdict(list) #box accuracy metric
if self.test_mode:
print('*'*62)
print('* [WARNING] Eval unavailable for the test set! *\
\n* Results will be saved to: '+self.result_dir+' *\
\n* Please submit your results to the eval server! *')
print('*'*62)
self.ndata = kwargs['ndata']
self.count = 0
self.json_data = {}
self.database = {}
def get_accuracy(self, predictions, data):
"""
Args:
predictions: (Tensor, shape [N,W,T,D]), attention weight output from model
data: (dictionary)
- rpn_original (Tensor, shape [N,T,D,4])
- box (Tensor, shape [N,O,T,5]), [cls_label, ytl, xtl, ybr, xbr] (note order in coordinates is different)
- box_label (Tensor, shape [N,W])
- vis_name (List, shape [N]), unique segment identifier
- class_labels_dict (dict, length 67) class index to class label mapping
T: number of frames
D: dimension of features
O: number of objects to ground
W: unique word in segment (from YC2BB class dictionary)
Return:
Box accuracy score
"""
attn_weights = predictions
N = attn_weights.shape[0]
self.count += N
rpn_batch = data['rpn_original']
box_batch = data['box']
obj_batch = data['box_label']
box_label_batch = obj_batch
vis_name = data['vis_name']
class_labels_dict = data['class_labels_dict']
# fps is the frame rate of the attention map
# both rpn_batch and box_batch have fps=1
_, T_rp, num_proposals, _ = rpn_batch.size()
_, O, T_gt, _ = box_batch.size()
T_attn = attn_weights.size(2)
assert(T_rp == T_gt) # both sampled at 1fps
#print('# of frames in gt: {}, # of frames in resampled attn. map: {}'.format(T_gt, np.rint(T_attn/self.fps)))
hits, misses = [0 for o in range(O)], [0 for o in range(O)]
results = []
pos_counter = 0
neg_counter = 0
segment_dict = {} #segment dictionary - to output results to JSON file
all_objects = []
for o in range(O):
object_dict = {}
if box_label_batch[0, o] not in obj_batch[0, :]:
print('object {} is not grounded!'.format(box_label_batch[0, o]))
continue # don't compute score if the object is not grounded
obj_ind_in_attn = (obj_batch[0, :] == box_label_batch[0, o]).nonzero().squeeze()
if obj_ind_in_attn.numel() > 1:
obj_ind_in_attn = obj_ind_in_attn[0]
else:
obj_ind_in_attn = obj_ind_in_attn.item()
new_attn_weights = attn_weights[0, obj_ind_in_attn]
_, max_attn_ind = torch.max(new_attn_weights, dim=1)
# uncomment this for the random baseline
# max_attn_ind = torch.floor(torch.rand(T_attn)*num_proposals).long()
label = class_labels_dict[box_label_batch[0,o].item()]
object_dict = {'label':label}
boxes = []
for t in range(T_gt):
if box_batch[0,o,t,0] == -1: # object is outside/non-exist/occlusion
boxes.append({'xtl':-1, 'ytl':-1, 'xbr':-1, 'ybr':-1, 'outside':1, 'occluded':1}) #object is either occluded or outside of frame
neg_counter += 1
continue
pos_counter += 1
box_ind = max_attn_ind[int(min(np.rint(t*self.fps), T_attn-1))]
box_coord = rpn_batch[0, t, box_ind, :].view(4) # x_tl, y_tl, x_br, y_br
gt_box = box_batch[0,o,t][torch.Tensor([2,1,4,3]).type(box_batch.type()).long()].view(1,4) # inverse x and y
if self.IOU.get_accuracy(box_coord, gt_box.float())[0].item() > self.thresh:
hits[o] += 1
else:
misses[o] += 1
xtl = box_coord[0].item()
ytl = box_coord[1].item()
xbr = box_coord[2].item()
ybr = box_coord[3].item()
boxes.append({'xtl':xtl, 'ytl':ytl, 'xbr':xbr, 'ybr':ybr, 'outside':0, 'occluded':0})
object_dict['boxes'] = boxes
all_objects.append(object_dict)
results.append((box_label_batch[0, o].item(), hits[o], misses[o]))
segment_dict['objects'] = all_objects
#print('percentage of frames with box: {}'.format(pos_counter/(pos_counter+neg_counter)))
for (i,h,m) in results:
self.ba_score[i].append((h,m))
#Annotations for the testing split are not publicly available
if self.test_mode:
split, rec, video_name, segment = vis_name[0].split('_-_')
if video_name not in self.database:
self.database[video_name] = {}
self.database[video_name]['recipe_type'] = rec
if 'segments' not in self.database[video_name]:
self.database[video_name]['segments'] = {}
self.database[video_name]['segments'][int(segment)] = segment_dict
#Predictions will be saved to JSON file (if not in debug mode)
if self.count >= self.ndata and not self.debug:
self.json_data['database'] = self.database
with open(self.result_dir, 'w') as f:
json.dump(self.json_data, f)
print('Saved submission file to: {}'.format(self.result_dir))
return -1
ba_final = []
for k, r in self.ba_score.items():
cur_hit = 0
cur_miss = 0
for v in r:
cur_hit += v[0]
cur_miss += v[1]
if cur_hit+cur_miss != 0:
#print('BA for {}(...): {:.4f}'.format(k, cur_hit/(cur_hit+cur_miss)))
ba_final.append(cur_hit/(cur_hit+cur_miss))
return np.mean(ba_final)