-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathYOLO_Youtube.py
executable file
·158 lines (121 loc) · 5.4 KB
/
YOLO_Youtube.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import cv2
from cv2 import threshold
import pafy
import numpy as np
import time
import cv2
import os
# Params
url = "https://www.youtube.com/watch?v=bhWdPoWJzCE" # Youtube url
abs_path_labels = "/home/<Yourname>/coco.names"
abs_path_weights = "/home/<Yourname>/yolov3.weights"
abs_path_config = "/home/<Yourname>/YoutubeRealTimeYOLO/darknet/cfg/yolov3.cfg"
confidence_thres = 0.5
non_max_thres = 0.3
# YOLO
if __name__ == "__main__":
# load the COCO class labels our YOLO model was trained on
labelsPath = os.path.sep.join([abs_path_labels])
LABELS = open(labelsPath).read().strip().split("\n")
# initialize a list of colors to represent each possible class label
np.random.seed(42)
COLORS = np.random.randint(0, 255, size=(len(LABELS), 3),
dtype="uint8")
# derive the paths to the YOLO weights and model configuration
weightsPath = os.path.sep.join([abs_path_weights])
print("[INFO] Found weights")
configPath = os.path.sep.join([abs_path_config])
print("[INFO] Found configuration file")
# load our YOLO object detector trained on COCO dataset (80 classes)
# and determine only the *output* layer names that we need from YOLO
print("[INFO] Loading YOLO")
net = cv2.dnn.readNetFromDarknet(configPath, weightsPath)
net.setPreferableBackend(cv2.dnn.DNN_BACKEND_CUDA)
net.setPreferableTarget(cv2.dnn.DNN_TARGET_CUDA)
ln = net.getLayerNames()
ln = [ln[i - 1] for i in net.getUnconnectedOutLayers()]
v = pafy.new(url)
best = v.getbest(preftype="any")
cap = cv2.VideoCapture(best.url)
if (cap.isOpened()==False):
print("[ERROR] Could not load video")
else:
# Set height & width of video
ret, frame = cap.read()
(H,W) = frame.shape[:2]
fps = cap.get(5)
print('Frames per second : ', fps,'FPS')
# loop over frames from the video file stream
while cap.isOpened():
# read the next frame from the file
ret, frame = cap.read()
cap.set(cv2.CAP_PROP_BUFFERSIZE,1)
print(frame.shape)
# Check if frame is grabbed
if not ret:
print("[WARNING] Frame is lost")
continue
# construct a blob from the input frame and then perform a forward
# pass of the YOLO object detector, giving us our bounding boxes
# and associated probabilities
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416),
swapRB=True, crop=False)
net.setInput(blob)
start = time.time()
layerOutputs = net.forward(ln)
end = time.time()
# initialize our lists of detected bounding boxes, confidences,
# and class IDs, respectively
boxes = []
confidences = []
classIDs = []
# loop over each of the layer outputs
for output in layerOutputs:
# loop over each of the detections
for detection in output:
# extract the class ID and confidence (i.e., probability)
# of the current object detection
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
# filter out weak predictions by ensuring the detected
# probability is greater than the minimum probability
if confidence > confidence_thres:
# scale the bounding box coordinates back relative to
# the size of the image, keeping in mind that YOLO
# actually returns the center (x, y)-coordinates of
# the bounding box followed by the boxes' width and
# height
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
# use the center (x, y)-coordinates to derive the top
# and and left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# update our list of bounding box coordinates,
# confidences, and class IDs
boxes.append([x, y, int(width), int(height)])
confidences.append(float(confidence))
classIDs.append(classID)
# apply non-maxima suppression to suppress weak, overlapping
# bounding boxes
idxs = cv2.dnn.NMSBoxes(boxes, confidences, confidence_thres,non_max_thres)
# ensure at least one detection exists
if len(idxs) > 0:
# loop over the indexes we are keeping
for i in idxs.flatten():
# extract the bounding box coordinates
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
# draw a bounding box rectangle and label on the frame
color = [int(c) for c in COLORS[classIDs[i]]]
cv2.rectangle(frame, (x, y), (x + w, y + h), color, 2)
text = "{}: {:.4f}".format(LABELS[classIDs[i]],
confidences[i])
cv2.putText(frame, text, (x, y - 5),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
cv2.imshow('outputWindows',frame)
if cv2.waitKey(1) & 0xFF == ord('q'):# Press 'ESC' for exiting video
break
cap.release()
cv2.destroyAllWindows()