-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
445 lines (364 loc) · 16.4 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
from flask import Flask, render_template, url_for, jsonify, request, redirect, session, flash
import test
from datetime import timedelta
from flask_sqlalchemy import SQLAlchemy
import configparser
import json
#import knn_spark
app = Flask(__name__)
app.secret_key = "hellothisismysecretkey"
app.config['JSON_AS_ASCII'] = False
app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False
#app.config['SQLALCHEMY_DATABASE_URI'] = "mysql+pymysql://username:your_password@localhost:3306/traindb"
app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///users_table.sqlite3' # "users_table" here is the name of the table that you're gonna be referencing
app.permanent_session_lifetime = timedelta(minutes=3)
db = SQLAlchemy(app)
from google.oauth2 import id_token
import google.auth.transport.requests as google_request
import requests
config = configparser.ConfigParser()
config.read('Config.ini')
GOOGLE_OAUTH2_CLIENT_ID = config['GOOGLE']['ClientId']
import os
from werkzeug.utils import secure_filename
UPLOAD_FOLDER = './upload'
ALLOWED_EXTENSIONS = set(['pdf', 'png', 'jpg', 'jpeg', 'gif', 'txt'])
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
app.config['MAX_CONTENT_LENGTH'] = 256 * 1024 * 1024
class users_table(db.Model): # The columns represent pieces of information;Rows represent in ;Rows represent individual items
_id = db.Column("id",db.Integer, primary_key=True) # id will be automatically be created for us because it's a primary key
name = db.Column(db.String(100)) # 100 here is the maximum length of the string that we want to store(100 characters)
email = db.Column(db.String(100)) # string也可以改成integer/float/boolean
password = db.Column(db.String(100))
def __init__(self, name, password, email): # We want to store users and each users has a name and an email (these 2 are what we need every time we define a new user object)(the init method will take the variables that we need to create a new object)
self.name = name
self.password = password
self.email = email
class knn(db.Model):
# Class Name = Table Name
rid = db.Column(db.Integer, primary_key=True, autoincrement = True)
distance = db.Column(db.VARCHAR(255))
username = db.Column(db.VARCHAR(255))
score = db.Column(db.Float)
neighbor = db.Column(db.Integer)
dataset_name = db.Column(db.VARCHAR(255))
#featureLen = db.Column(db.Integer)
seed = db.Column(db.Integer)
timestamp = db.Column(db.DateTime, default=db.func.current_timestamp())
def __init__(self, distance_func='', username='anonymous', score=0, num_nearest_neigbours=3, dataset='', seed=10):
self.distance = distance_func
self.username = username
self.score = score
self.neighbor = num_nearest_neigbours
self.seed = seed
self.dataset_name = dataset
def save_to_db(self):
db.session.add(self)
db.session.commit()
class nb(db.Model):
# Class Name = Table Name
rid = db.Column(db.Integer, primary_key=True, autoincrement=True)
username = db.Column(db.VARCHAR(255))
score = db.Column(db.Float)
dataset_name = db.Column(db.VARCHAR(255))
seed = db.Column(db.Integer)
timestamp = db.Column(db.DateTime, default=db.func.current_timestamp())
def __init__(self, username='anonymous', score=0, dataset='', seed=10):
self.username = username
self.score = score
self.seed = seed
self.dataset_name = dataset
def save_to_db(self):
db.session.add(self)
db.session.commit()
class lr(db.Model):
rid = db.Column(db.Integer, primary_key=True, autoincrement=True)
username = db.Column(db.VARCHAR(255))
score = db.Column(db.Float)
dataset_name = db.Column(db.VARCHAR(255))
seed = db.Column(db.Integer)
iterations = db.Column(db.Integer)
timestamp = db.Column(db.DateTime, default=db.func.current_timestamp())
def __init__(self, username='anonymous', score=0, iterations=10, dataset='', seed=10):
self.username = username
self.score = score
self.seed = seed
self.dataset_name = dataset
self.iterations = iterations
def save_to_db(self):
db.session.add(self)
db.session.commit()
class dt(db.Model):
rid = db.Column(db.Integer, primary_key=True, autoincrement=True)
username = db.Column(db.VARCHAR(255))
score = db.Column(db.Float)
dataset_name = db.Column(db.VARCHAR(255))
categorical_features_info = db.Column(db.VARCHAR(255))
seed = db.Column(db.Integer)
timestamp = db.Column(db.DateTime, default=db.func.current_timestamp())
def __init__(self, username='anonymous', categoricalFeaturesInfo={}, score=0, dataset='', seed=10):
self.username = username
self.score = score
self.seed = seed
self.dataset_name = dataset
self.categorical_features_info = json.dumps(categoricalFeaturesInfo)
def save_to_db(self):
db.session.add(self)
db.session.commit()
class rf(db.Model):
rid = db.Column(db.Integer, primary_key=True, autoincrement=True)
username = db.Column(db.VARCHAR(255))
score = db.Column(db.Float)
dataset_name = db.Column(db.VARCHAR(255))
categorical_features_info = db.Column(db.VARCHAR(255))
seed = db.Column(db.Integer)
num_tree = db.Column(db.Integer)
timestamp = db.Column(db.DateTime, default=db.func.current_timestamp())
def __init__(self, username='anonymous', categoricalFeaturesInfo={}, numTrees=5, score=0, dataset='', seed=10):
self.username = username
self.score = score
self.seed = seed
self.dataset_name = dataset
self.num_tree = numTrees
self.categorical_features_info = json.dumps(categoricalFeaturesInfo)
def save_to_db(self):
db.session.add(self)
db.session.commit()
@app.route('/')
def homepage():
return render_template('homepage.html')
@app.route('/knn')
def knn_algo_page():
return render_template('knn.html')
# @app.route('/knn_predict')
# def knn_predict_page():
# return render_template('knn_predict.html')
@app.route('/nb')
def nb_algo_page():
return render_template('nb.html')
@app.route('/lr')
def lr_algo_page():
return render_template('lr.html')
@app.route('/dt')
def dt_algo_page():
return render_template('dt.html')
@app.route('/rf')
def rf_algo_page():
return render_template('rf.html')
@app.route('/nb_predict')
def nb_predict_page():
return render_template('nb_predict.html')
@app.route('/lr_predict')
def lr_predict_page():
return render_template('lr_predict.html')
@app.route('/dt_predict')
def dt_predict_page():
return render_template('dt_predict.html')
@app.route('/rf_predict')
def rf_predict_page():
return render_template('rf_predict.html')
@app.route('/upload_event', methods=["POST"])
def upload_event():
if request.method == 'POST':
file = request.files['file']
if file and allowed_file(file.filename):
filename = secure_filename(file.filename)
file.save(os.path.join(app.config['UPLOAD_FOLDER'],
filename))
print("[debug in upload_event] filename=", filename, flush=True)
return redirect(request.referrer)
#return jsonify({}), 200
#session['uploaded_filename'] = filename
#return redirect(url_for('uploaded_file',
# filename=filename))
@app.route("/login",methods=["POST","GET"])
def login():
if request.method == "POST":
session.permanent = True #used to define this specific session as a permanent session which means it's gonna last as long as we define up there
user = request.form["nm"]
password = request.form["pwd"]
found_user = users_table.query.filter_by(name=user).first()
if found_user: # When an user types his name, we'll check if this user is already exist. If not then we'll create one
print(found_user, flush=True)
if found_user.password != password:
flash("Login Failed ! plz check your email or password!")
return redirect(url_for("login"))
else:
session["user"] = user
session["email"] = found_user.email
else:
usr = users_table(user, password, "")
db.session.add(usr) # add this user model to our database
db.session.commit()
flash("Login Succesful!")
return redirect(url_for("user"))
else:
if "user" in session: #代表若已經是signed in的狀態
flash("Already Logged in!")
return redirect(url_for("user"))
else:
return render_template("login.html", google_oauth2_client_id=GOOGLE_OAUTH2_CLIENT_ID)
@app.route("/user",methods=["POST","GET"])
def user():
email = None
user = None
if "user" in session:
user = session["user"]
print("[debug in user()]: session['user']:",
session["user"],"; user:", user, flush=True)
if request.method == "POST":
email = request.form["email"] # grab that email from the email field
session["email"] = email # store it in the session
found_user = users_table.query.filter_by(name=user).first()
found_user.email = email
db.session.commit() # next time we login this will be saved
flash("Email was saved!")
return redirect("/")
else: # if it's a GET request
if "email" in session:
email = session["email"] # get the email from the session
return render_template("user.html", email=email, google_oauth2_client_id=GOOGLE_OAUTH2_CLIENT_ID)
else:
flash("You are not logged in!")
return redirect(url_for("login"))
@app.route("/logout")
def logout():
if "google_token" in session:
# print("[debug in logout] token=", session['google_token'], flush=True)
# response = requests.post('https://accounts.google.com/o/oauth2/revoke',
# params={'token': session['google_token']},
# headers={'content-type': 'application/x-www-form-urlencoded'})
session.pop('google_token')
flash("You have been logged out!", "info")
session.pop("user",None) #remove the user data from my session
session.pop("email",None)
return redirect(url_for("login"))
@app.route("/view")
def view():
return render_template("view.html",values=users_table.query.all())
@app.route("/about")
def about():
return render_template("about.html")
@app.route('/google_sign_in', methods=['POST'])
def google_sign_in():
token = request.json['id_token']
username = request.json['email']
try:
# Specify the GOOGLE_OAUTH2_CLIENT_ID of the app that accesses the backend:
id_info = id_token.verify_oauth2_token(
token,
google_request.Request(),
GOOGLE_OAUTH2_CLIENT_ID
)
if id_info['iss'] not in ['accounts.google.com', 'https://accounts.google.com']:
raise ValueError('Wrong issuer.')
# ID token is valid. Get the user's Google Account ID from the decoded token.
# user_id = id_info['sub']
# reference: https://developers.google.com/identity/sign-in/web/backend-auth
except ValueError:
# Invalid token
raise ValueError('Invalid token')
print('Login Success', username, "\nToken:\n", token, flush=True)
flash("Login Succesful!")
session['user'] = username
session['google_token'] = token
return jsonify({}), 200
import train_with_class
@app.route('/train', methods=['POST'])
def train_with_algo():
data = request.get_json()
algorithm = data.pop(
'algorithm', '[in train_with_algo()] error, unknown algorithm ...')
# Run Training process
train_score = train_with_class.call_train_function(
algorithm=algorithm, mode='train', algorithm_parameter=data) # call_train_function(algorithm, mode, algorithm_parameter)
print('[debug in train_with_algo()]: data=', data, flush=True)
print('[debug in train_with_algo()]: response=', train_score, flush=True)
# Create a record and Save to DB
p = globals()[algorithm.lower()](
**data, score=train_score, username='anonymous' if "user" not in session else session['user'])
p.save_to_db()
return jsonify(train_score)
@app.route('/predict', methods=['POST'])
def predict_with_algo():
data = request.get_json()
algorithm = data.pop(
'algorithm', '[in train_with_algo()] error, unknown algorithm ...')
# Run Predicting process
train_score = train_with_class.call_train_function(
algorithm=algorithm, mode='test', algorithm_parameter=data) # call_train_function(algorithm, mode, algorithm_parameter)
print('[debug in train_with_algo()]: data=', data, flush=True)
print('[debug in train_with_algo()]: response=', train_score, flush=True)
return jsonify(train_score)
@app.route('/query', methods=['POST'])
def query_train_data():
data = request.get_json()
print("[debug in query_train_data()] data=", data, flush=True)
db_data = None
if data['query_num'] == '':
data['query_num'] = 100
username = 'anonymous' if "user" not in session else session['user']
algo_class = globals()[data['use_algo'].lower()]
if data['query_table_key'] == "all":
db_data = algo_class.query.filter_by(
username=username).limit(int(data['query_num']))
elif data['query_table_key'] == "distance":
db_data = algo_class.query.filter_by(
distance=data['query_table_value']).filter_by(
username=username).limit(int(data['query_num']))
elif data['query_table_key'] == "datasetName":
db_data = algo_class.query.filter_by(
dataset_name=data['query_table_value']).filter_by(
username=username).limit(int(data['query_num']))
elif data['query_table_key'] == "neighbor":
db_data = algo_class.query.filter_by(
neighbor=data['query_table_value']).filter_by(
username=username).limit(int(data['query_num']))
elif data['query_table_key'] == "seed":
db_data = algo_class.query.filter_by(
seed=data['query_table_value']).filter_by(
username=username).limit(int(data['query_num']))
elif data['query_table_key'] == "iterations":
db_data = algo_class.query.filter_by(
iterations=data['query_table_value']).filter_by(
username=username).limit(int(data['query_num']))
elif data['query_table_key'] == "categorical_features_info":
db_data = algo_class.query.filter_by(
categorical_features_info=data['query_table_value']).filter_by(
username=username).limit(int(data['query_num']))
elif data['query_table_key'] == "num_tree":
db_data = algo_class.query.filter_by(
num_tree=data['query_table_value']).filter_by(
username=username).limit(int(data['query_num']))
else:
db_data = ["key not found"]
response = {}
if data['use_algo'] == 'KNN':
for idx, o in enumerate(db_data):
response[idx] = [o.rid, o.dataset_name, o.distance, o.score, o.neighbor,
o.seed, o.timestamp.strftime("%m/%d/%Y, %H:%M:%S")]
elif data['use_algo'] == 'NB':
for idx, o in enumerate(db_data):
response[idx] = [o.rid, o.dataset_name, o.score, o.seed,
o.timestamp.strftime("%m/%d/%Y, %H:%M:%S")]
elif data['use_algo'] == 'LR':
for idx, o in enumerate(db_data):
response[idx] = [o.rid, o.dataset_name, o.score, o.iterations, o.seed,
o.timestamp.strftime("%m/%d/%Y, %H:%M:%S")]
elif data['use_algo'] == 'DT':
for idx, o in enumerate(db_data):
response[idx] = [o.rid, o.dataset_name, o.score, o.categorical_features_info, o.seed,
o.timestamp.strftime("%m/%d/%Y, %H:%M:%S")]
elif data['use_algo'] == 'RF':
for idx, o in enumerate(db_data):
response[idx] = [o.rid, o.dataset_name, o.score, o.categorical_features_info, o.num_tree, o.seed,
o.timestamp.strftime("%m/%d/%Y, %H:%M:%S")]
response = jsonify(status="success", data=response)
print(response, flush=True)
return response
def allowed_file(filename):
return '.' in filename and \
filename.rsplit('.', 1)[1] in ALLOWED_EXTENSIONS
if __name__ == '__main__':
db.create_all()
app.run(debug=True, port=5000, host='0.0.0.0')