Skip to content

Commit e43b9d4

Browse files
committed
Remove trailing whitespace
With ``` git grep --name-only ' $' '*.v' | xargs sed -i 's/\s\+$//g' ```
1 parent d702f18 commit e43b9d4

File tree

213 files changed

+8964
-8969
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

213 files changed

+8964
-8969
lines changed

erasure/theories/EArities.v

Lines changed: 50 additions & 50 deletions
Original file line numberDiff line numberDiff line change
@@ -8,7 +8,7 @@ From MetaCoq.PCUIC Require Import PCUICAst PCUICAstUtils
88
PCUICWeakeningEnv PCUICWeakeningEnvTyp
99
PCUICWellScopedCumulativity
1010
PCUICContextConversion PCUICConversion PCUICCanonicity
11-
PCUICSpine PCUICInductives PCUICInductiveInversion PCUICConfluence
11+
PCUICSpine PCUICInductives PCUICInductiveInversion PCUICConfluence
1212
PCUICArities PCUICPrincipality.
1313

1414
From MetaCoq.Erasure Require Import Extract.
@@ -60,7 +60,7 @@ Lemma isArity_ind_type (Σ : global_env_ext) mind ind idecl :
6060
declared_inductive (fst Σ) ind mind idecl ->
6161
isArity (ind_type idecl).
6262
Proof.
63-
intros.
63+
intros.
6464
eapply (declared_inductive_inv weaken_env_prop_typing) in H; eauto.
6565
- inv H. rewrite ind_arity_eq.
6666
change PCUICEnvironment.it_mkProd_or_LetIn with it_mkProd_or_LetIn.
@@ -108,14 +108,14 @@ Proof.
108108
- eapply IHL in H. cbn in H. tauto.
109109
Qed.
110110

111-
Lemma typing_spine_red (Σ : global_env_ext) Γ (args args' : list PCUICAst.term)
111+
Lemma typing_spine_red (Σ : global_env_ext) Γ (args args' : list PCUICAst.term)
112112
(X : All2 (red Σ Γ) args args') (wfΣ : wf Σ)
113-
(T x x0 : PCUICAst.term)
114-
(t0 : typing_spine Σ Γ x args x0)
113+
(T x x0 : PCUICAst.term)
114+
(t0 : typing_spine Σ Γ x args x0)
115115
(c : Σ;;; Γ ⊢ x0 ≤ T) x1
116116
(c0 : Σ;;; Γ ⊢ x1 ≤ x) :
117117
isType Σ Γ x1 ->
118-
isType Σ Γ T ->
118+
isType Σ Γ T ->
119119
typing_spine Σ Γ x1 args' T.
120120
Proof.
121121
intros ? ?. revert args' X.
@@ -128,7 +128,7 @@ Proof.
128128
+ eapply IHt0; eauto.
129129
eapply red_ws_cumul_pb_inv.
130130
unfold subst1.
131-
eapply isType_tProd in i0 as [dom codom].
131+
eapply isType_tProd in i0 as [dom codom].
132132
eapply (closed_red_red_subst (Δ := [vass na A]) (Γ' := [])); auto.
133133
simpl. eapply isType_wf_local in codom. fvs.
134134
constructor; auto. eapply into_closed_red; auto. fvs. fvs.
@@ -137,11 +137,11 @@ Proof.
137137
eapply subject_reduction; tea.
138138
Qed.
139139

140-
Lemma it_mkProd_red_Arity {Σ : global_env_ext} {Γ c0 i u l} {wfΣ : wf Σ} :
140+
Lemma it_mkProd_red_Arity {Σ : global_env_ext} {Γ c0 i u l} {wfΣ : wf Σ} :
141141
~ Is_conv_to_Arity Σ Γ (it_mkProd_or_LetIn c0 (mkApps (tInd i u) l)).
142142
Proof.
143143
intros (? & [] & ?). eapply red_it_mkProd_or_LetIn_mkApps_Ind in X as (? & ? & ?). subst.
144-
eapply it_mkProd_arity in H. eapply isArity_mkApps in H as [[] ].
144+
eapply it_mkProd_arity in H. eapply isArity_mkApps in H as [[] ].
145145
Qed.
146146

147147
Lemma invert_it_Ind_eq_prod:
@@ -203,7 +203,7 @@ Proof.
203203
* rewrite /mkProd_or_LetIn /=. simpl => /= sp.
204204
simpl.
205205
dependent elimination sp as [spnil i i' e|spcons i i' e e' sp].
206-
{ exists (Γ0 ++ [vass na ty]).
206+
{ exists (Γ0 ++ [vass na ty]).
207207
exists args. now rewrite it_mkProd_or_LetIn_app. }
208208
eapply ws_cumul_pb_Prod_Prod_inv in e as [eqna dom codom]; pcuic.
209209
eapply (substitution0_ws_cumul_pb (t:=hd0)) in codom; eauto.
@@ -255,7 +255,7 @@ Proof.
255255
eapply PCUICValidity.validity. econstructor; eauto.
256256
Qed.
257257

258-
Lemma nIs_conv_to_Arity_nArity {Σ : global_env_ext} {wfΣ : wf Σ} {Γ T} :
258+
Lemma nIs_conv_to_Arity_nArity {Σ : global_env_ext} {wfΣ : wf Σ} {Γ T} :
259259
isType Σ Γ T ->
260260
~ Is_conv_to_Arity Σ Γ T -> ~ isArity T.
261261
Proof.
@@ -270,12 +270,12 @@ Lemma tConstruct_no_Type (Σ : global_env_ext) Γ ind c u x1 : wf Σ ->
270270
Is_proof Σ Γ (mkApps (tConstruct ind c u) x1).
271271
Proof.
272272
intros wfΣ (? & ? & [ | (? & ? & ?)]).
273-
- exfalso.
273+
- exfalso.
274274
eapply nIs_conv_to_Arity_nArity; tea.
275275
eapply PCUICValidity.validity; tea.
276276
eapply type_mkApps_tConstruct_n_conv_arity in t; auto.
277277
- exists x, x0. eauto.
278-
Qed.
278+
Qed.
279279

280280
(* if a cofixpoint is a type or proof, it is a proof *)
281281

@@ -316,7 +316,7 @@ Qed.
316316
Lemma typing_spine_wat (Σ : global_env_ext) (Γ : context) (L : list term)
317317
(x x0 : term) :
318318
wf Σ ->
319-
typing_spine Σ Γ x L x0 ->
319+
typing_spine Σ Γ x L x0 ->
320320
isType Σ Γ x0.
321321
Proof.
322322
intros wfΣ; induction 1; auto.
@@ -394,8 +394,8 @@ Lemma sort_typing_spine:
394394
forall (Σ : global_env_ext) (Γ : context) (L : list term) (u : Universe.t) (x x0 : term),
395395
wf_ext Σ ->
396396
is_propositional u ->
397-
typing_spine Σ Γ x L x0 ->
398-
Σ;;; Γ |- x : tSort u ->
397+
typing_spine Σ Γ x L x0 ->
398+
Σ;;; Γ |- x : tSort u ->
399399
∑ u', Σ;;; Γ |- x0 : tSort u' × is_propositional u'.
400400
Proof.
401401
intros Σ Γ L u x x0 HΣ ? t1 c0.
@@ -422,8 +422,8 @@ Qed.
422422
Lemma arity_type_inv (Σ : global_env_ext) Γ t T1 T2 : wf_ext Σ -> wf_local Σ Γ ->
423423
Σ ;;; Γ |- t : T1 -> isArity T1 -> Σ ;;; Γ |- t : T2 -> Is_conv_to_Arity Σ Γ T2.
424424
Proof.
425-
intros wfΣ wfΓ. intros.
426-
destruct (common_typing _ _ X X0) as (? & e & ? & ?).
425+
intros wfΣ wfΓ. intros.
426+
destruct (common_typing _ _ X X0) as (? & e & ? & ?).
427427
eapply invert_cumul_arity_l_gen; tea.
428428
eapply invert_cumul_arity_r_gen. 2:exact e.
429429
exists T1. split; auto. sq.
@@ -467,7 +467,7 @@ Lemma leq_term_propositional_sorted_l {Σ Γ v v' u u'} :
467467
wf_ext Σ ->
468468
PCUICEquality.leq_term Σ (global_ext_constraints Σ) v v' ->
469469
Σ;;; Γ |- v : tSort u ->
470-
Σ;;; Γ |- v' : tSort u' -> is_propositional u ->
470+
Σ;;; Γ |- v' : tSort u' -> is_propositional u ->
471471
leq_universe (global_ext_constraints Σ) u' u.
472472
Proof.
473473
intros wf leq Hv Hv' isp.
@@ -481,7 +481,7 @@ Lemma leq_term_propopositional_sorted_r {Σ Γ v v' u u'} :
481481
wf_ext Σ ->
482482
PCUICEquality.leq_term Σ (global_ext_constraints Σ) v v' ->
483483
Σ;;; Γ |- v : tSort u ->
484-
Σ;;; Γ |- v' : tSort u' -> is_propositional u' ->
484+
Σ;;; Γ |- v' : tSort u' -> is_propositional u' ->
485485
leq_universe (global_ext_constraints Σ) u u'.
486486
Proof.
487487
intros wfΣ leq hv hv' isp.
@@ -579,15 +579,15 @@ Proof.
579579
destruct s as [ | (u & ? & ?)].
580580
- eapply invert_cumul_arity_r in e; eauto. destruct e as (? & [] & ?).
581581
eapply invert_red_prod in X1 as (? & ? & []); eauto; subst. cbn in H.
582-
econstructor. exists x3. econstructor.
582+
econstructor. exists x3. econstructor.
583583
eapply type_reduction_closed; eauto. econstructor; eauto.
584584
- sq. eapply cumul_prop1' in e; eauto.
585585
eapply inversion_Prod in e as (? & ? & ? & ? & e) ; auto.
586586
eapply ws_cumul_pb_Sort_inv in e.
587587
eapply leq_universe_propositional_r in e as H0; cbn; eauto.
588588
eexists. split. eassumption. right. eexists. split. eassumption.
589589
eapply is_propositional_sort_prod in H0; eauto.
590-
eapply type_Lambda in t1; eauto.
590+
eapply type_Lambda in t1; eauto.
591591
now apply PCUICValidity.validity in t1.
592592
Qed.
593593

@@ -614,7 +614,7 @@ Proof.
614614
eapply wcbeval_red; eauto. assumption.
615615
Qed.
616616

617-
(* Thanks to the restriction to Prop </= Type, erasability is also closed by expansion
617+
(* Thanks to the restriction to Prop </= Type, erasability is also closed by expansion
618618
on well-typed terms. *)
619619

620620
Lemma Is_type_eval_inv (Σ : global_env_ext) t v:
@@ -646,7 +646,7 @@ Proof.
646646
intros [s hs]; eapply wt_closed_red_refl; tea.
647647
Qed.
648648

649-
Lemma nIs_conv_to_Arity_isWfArity_elim {Σ} {wfΣ : wf Σ} {Γ x} :
649+
Lemma nIs_conv_to_Arity_isWfArity_elim {Σ} {wfΣ : wf Σ} {Γ x} :
650650
~ Is_conv_to_Arity Σ Γ x ->
651651
isWfArity Σ Γ x ->
652652
False.
@@ -659,11 +659,11 @@ Proof.
659659
now eapply it_mkProd_isArity.
660660
Qed.
661661

662-
Definition isErasable_Type (Σ : global_env_ext) Γ T :=
662+
Definition isErasable_Type (Σ : global_env_ext) Γ T :=
663663
(Is_conv_to_Arity Σ Γ T +
664664
(∑ u : Universe.t, Σ;;; Γ |- T : tSort u × is_propositional u))%type.
665665

666-
Lemma isErasable_any_type {Σ} {wfΣ : wf_ext Σ} {Γ t T} :
666+
Lemma isErasable_any_type {Σ} {wfΣ : wf_ext Σ} {Γ t T} :
667667
isErasable Σ Γ t ->
668668
Σ ;;; Γ |- t : T ->
669669
isErasable_Type Σ Γ T.
@@ -680,12 +680,12 @@ Proof.
680680
eapply cumul_prop1'; eauto. eapply PCUICValidity.validity; eauto.
681681
Qed.
682682

683-
Lemma Is_proof_ty Σ Γ t :
683+
Lemma Is_proof_ty Σ Γ t :
684684
wf_ext Σ ->
685-
Is_proof Σ Γ t ->
686-
forall t' ty,
685+
Is_proof Σ Γ t ->
686+
forall t' ty,
687687
Σ ;;; Γ |- t : ty ->
688-
Σ ;;; Γ |- t' : ty ->
688+
Σ ;;; Γ |- t' : ty ->
689689
Is_proof Σ Γ t'.
690690
Proof.
691691
intros wfΣ [ty [u [Hty isp]]].
@@ -750,7 +750,7 @@ Proof.
750750
eapply leq_universe_sprop_l in leu; tea => //.
751751
Qed.
752752

753-
Lemma typing_spine_inj {Σ Γ Δ s args args' u u'} :
753+
Lemma typing_spine_inj {Σ Γ Δ s args args' u u'} :
754754
wf_ext Σ ->
755755
check_univs ->
756756
prop_sub_type = false ->
@@ -765,12 +765,12 @@ Proof.
765765
eapply is_propositional_lower; tea. apply wf.
766766
Qed.
767767

768-
Lemma Is_proof_ind Σ Γ t :
768+
Lemma Is_proof_ind Σ Γ t :
769769
wf_ext Σ ->
770-
Is_proof Σ Γ t ->
771-
forall t' ind u args args',
770+
Is_proof Σ Γ t ->
771+
forall t' ind u args args',
772772
Σ ;;; Γ |- t : mkApps (tInd ind u) args ->
773-
Σ ;;; Γ |- t' : mkApps (tInd ind u) args' ->
773+
Σ ;;; Γ |- t' : mkApps (tInd ind u) args' ->
774774
Is_proof Σ Γ t'.
775775
Proof.
776776
intros wfΣ [ty [u [Hty isp]]].
@@ -806,21 +806,21 @@ Proof.
806806
eapply inversion_Case in hc as [mdecl [idecl [isdecl [indices ?]]]]; eauto.
807807
eapply inversion_Case in hr as [mdecl' [idecl' [isdecl' [indices' ?]]]]; eauto.
808808
destruct (declared_inductive_inj isdecl isdecl'). subst mdecl' idecl'.
809-
intros hp.
809+
intros hp.
810810
epose proof (Is_proof_ind _ _ _ wfΣ hp).
811811
destruct p0 as [[] ?]. destruct p1 as [[] ?].
812812
exact (X _ _ _ _ _ scrut_ty scrut_ty0).
813813
Qed.
814814

815815
Lemma Is_proof_app {Σ Γ t args ty} {wfΣ : wf_ext Σ} :
816-
Is_proof Σ Γ t ->
816+
Is_proof Σ Γ t ->
817817
Σ ;;; Γ |- mkApps t args : ty ->
818818
Is_proof Σ Γ (mkApps t args).
819819
Proof.
820820
intros [ty' [u [Hty [isp pu]]]] Htargs.
821821
eapply PCUICValidity.inversion_mkApps in Htargs as [A [Ht sp]].
822-
pose proof (PCUICValidity.validity Hty).
823-
pose proof (PCUICValidity.validity Ht).
822+
pose proof (PCUICValidity.validity Hty).
823+
pose proof (PCUICValidity.validity Ht).
824824
epose proof (PCUICPrincipality.common_typing _ wfΣ Hty Ht) as [C [Cty [Cty' Ht'']]].
825825
eapply PCUICSpine.typing_spine_strengthen in sp. 3:tea.
826826
edestruct (sort_typing_spine _ _ _ u _ _ _ pu sp) as [u' [Hty' isp']].
@@ -831,7 +831,7 @@ Proof.
831831
now eapply validity.
832832
Qed.
833833

834-
Lemma isErasable_Propositional {Σ : global_env_ext} {Γ ind n u args} :
834+
Lemma isErasable_Propositional {Σ : global_env_ext} {Γ ind n u args} :
835835
wf_ext Σ ->
836836
isErasable Σ Γ (mkApps (tConstruct ind n u) args) -> isPropositional Σ ind true.
837837
Proof.
@@ -863,7 +863,7 @@ Proof.
863863
eapply validity. econstructor; tea.
864864
Qed.
865865

866-
Lemma nisErasable_Propositional {Σ : global_env_ext} {Γ ind n u} :
866+
Lemma nisErasable_Propositional {Σ : global_env_ext} {Γ ind n u} :
867867
wf_ext Σ ->
868868
welltyped Σ Γ (tConstruct ind n u) ->
869869
(isErasable Σ Γ (tConstruct ind n u) -> False) -> isPropositional Σ ind false.
@@ -887,7 +887,7 @@ Proof.
887887
rewrite onc.(cstr_eq) in e, X.
888888
rewrite !subst_instance_it_mkProd_or_LetIn !PCUICLiftSubst.subst_it_mkProd_or_LetIn in e, X.
889889
len in e; len in X.
890-
rewrite subst_cstr_concl_head in e, X.
890+
rewrite subst_cstr_concl_head in e, X.
891891
destruct decli. eapply nth_error_Some_length in H1; eauto.
892892
rewrite -it_mkProd_or_LetIn_app in e, X.
893893
exists (subst_instance_univ u (ind_sort x0)).
@@ -910,9 +910,9 @@ Proof.
910910
do 2 constructor.
911911
rewrite is_propositional_subst_instance in sorts, sorts' |- *.
912912
specialize (sorts' isp). rewrite -sorts'. reflexivity.
913-
Qed.
913+
Qed.
914914

915-
Lemma isPropositional_propositional Σ (Σ' : E.global_context) ind mdecl idecl mdecl' idecl' :
915+
Lemma isPropositional_propositional Σ (Σ' : E.global_context) ind mdecl idecl mdecl' idecl' :
916916
PCUICAst.declared_inductive Σ ind mdecl idecl ->
917917
EGlobalEnv.declared_inductive Σ' ind mdecl' idecl' ->
918918
erases_mutual_inductive_body mdecl mdecl' ->
@@ -929,14 +929,14 @@ Proof.
929929
rewrite isP. intros ->. f_equal. f_equal. now rewrite indp.
930930
Qed.
931931

932-
Lemma isPropositional_propositional_cstr Σ (Σ' : E.global_context) ind c mdecl idecl cdecl mdecl' idecl' :
932+
Lemma isPropositional_propositional_cstr Σ (Σ' : E.global_context) ind c mdecl idecl cdecl mdecl' idecl' :
933933
wf Σ ->
934934
PCUICAst.declared_constructor Σ (ind, c) mdecl idecl cdecl ->
935935
EGlobalEnv.declared_inductive Σ' ind mdecl' idecl' ->
936936
erases_mutual_inductive_body mdecl mdecl' ->
937937
erases_one_inductive_body idecl idecl' ->
938-
forall b, isPropositional Σ ind b ->
939-
EGlobalEnv.constructor_isprop_pars_decl Σ' ind c =
938+
forall b, isPropositional Σ ind b ->
939+
EGlobalEnv.constructor_isprop_pars_decl Σ' ind c =
940940
Some (b, mdecl.(ind_npars), EAst.mkConstructor cdecl.(cstr_name) (context_assumptions cdecl.(cstr_args))).
941941
Proof.
942942
intros wfΣ declc decli' em ei b isp.
@@ -959,15 +959,15 @@ Qed.
959959
Lemma eval_tCase {cf : checker_flags} {Σ : global_env_ext} ci p discr brs res T :
960960
wf Σ ->
961961
Σ ;;; [] |- tCase ci p discr brs : T ->
962-
eval Σ (tCase ci p discr brs) res ->
962+
eval Σ (tCase ci p discr brs) res ->
963963
∑ c u args, PCUICReduction.red Σ [] (tCase ci p discr brs) (tCase ci p ((mkApps (tConstruct ci.(ci_ind) c u) args)) brs).
964964
Proof.
965965
intros wf wt H. depind H; try now (cbn in *; congruence).
966966
- eapply inversion_Case in wt as (? & ? & ? & ? & cinv & ?); eauto.
967967
eexists _, _, _. eapply PCUICReduction.red_case_c. eapply wcbeval_red. 2: eauto. eapply cinv.
968968
- eapply inversion_Case in wt as wt'; eauto. destruct wt' as (? & ? & ? & ? & cinv & ?).
969969
assert (Hred1 : PCUICReduction.red Σ [] (tCase ip p discr brs) (tCase ip p (mkApps fn args) brs)). {
970-
etransitivity. { eapply PCUICReduction.red_case_c. eapply wcbeval_red. 2: eauto. eapply cinv. }
970+
etransitivity. { eapply PCUICReduction.red_case_c. eapply wcbeval_red. 2: eauto. eapply cinv. }
971971
econstructor. econstructor.
972972
rewrite closed_unfold_cofix_cunfold_eq. eauto.
973973
enough (closed (mkApps (tCoFix mfix idx) args)) as Hcl by (rewrite closedn_mkApps in Hcl; solve_all).
@@ -1000,7 +1000,7 @@ Proof.
10001000
Qed.
10011001

10021002
Lemma isErasable_unfold_cofix {Σ : global_env_ext} {Γ mfix idx} {wfΣ : wf Σ} decl :
1003-
isErasable Σ Γ (tCoFix mfix idx) ->
1003+
isErasable Σ Γ (tCoFix mfix idx) ->
10041004
nth_error mfix idx = Some decl ->
10051005
isErasable Σ Γ (subst0 (cofix_subst mfix) (dbody decl)).
10061006
Proof.

erasure/theories/EAst.v

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -170,7 +170,7 @@ Notation " Γ ,, d " := (snoc Γ d) (at level 20, d at next level) : erasure.
170170

171171
(** *** Environments *)
172172

173-
Record constructor_body :=
173+
Record constructor_body :=
174174
mkConstructor {
175175
cstr_name : ident;
176176
cstr_nargs : nat (* arity, w/o lets, w/o parameters *)
@@ -199,9 +199,9 @@ Record mutual_inductive_body := {
199199
ind_bodies : list one_inductive_body }.
200200
Derive NoConfusion for mutual_inductive_body.
201201

202-
Definition cstr_arity (mdecl : mutual_inductive_body) (cdecl : constructor_body) :=
203-
(mdecl.(ind_npars) + cdecl.(cstr_nargs))%nat.
204-
202+
Definition cstr_arity (mdecl : mutual_inductive_body) (cdecl : constructor_body) :=
203+
(mdecl.(ind_npars) + cdecl.(cstr_nargs))%nat.
204+
205205
(** See [constant_body] from [declarations.ml] *)
206206
Record constant_body := { cst_body : option term }.
207207

0 commit comments

Comments
 (0)