-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
737 lines (591 loc) · 27.1 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
# import streamlit as st
# import pandas as pd
# import numpy as np
# from sklearn.model_selection import train_test_split
# from sklearn.preprocessing import StandardScaler
# from sklearn.compose import ColumnTransformer
# from sklearn.pipeline import Pipeline
# from sklearn.ensemble import RandomForestClassifier
# from sklearn.metrics import accuracy_score
# import matplotlib.pyplot as plt
# # Load the datasets
# df = pd.read_csv('crop_recommendation.csv')
# schemes_df = pd.read_csv('govscheme.csv')
# farm_data = pd.read_csv('farm_data.csv')
# # Preprocess the data
# num_col = ['N', 'P', 'K', 'temperature', 'humidity', 'ph', 'rainfall']
# target_col = 'label'
# X = df[num_col]
# y = df[target_col]
# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# preprocessor = ColumnTransformer(
# transformers=[('num', StandardScaler(), num_col)]
# )
# # Train the model
# model = RandomForestClassifier()
# pipe = Pipeline(steps=[('preprocessor', preprocessor), ('model', model)])
# pipe.fit(X_train, y_train)
# # Clean the schemes data
# schemes_df.replace('N/A', np.nan, inplace=True)
# schemes_df = schemes_df[
# (schemes_df['Implementation_End_Year'].str.lower() == 'ongoing') &
# (schemes_df['Farmer_Eligibility'].notna()) &
# (schemes_df['Target_Crops'].notna())
# ]
# # Function to suggest schemes based on the predicted crop
# def suggest_schemes(predicted_crop, region):
# predicted_crop = str(predicted_crop).lower()
# crop_categories = {
# 'fruits': ['banana', 'apple', 'mango', 'grapes', 'orange'],
# 'cereals': ['rice', 'wheat', 'maize'],
# 'beans': ['lentil', 'chickpea', 'black gram', 'kidneybeans'],
# 'nuts': ['peanut', 'almond', 'cashew']
# }
# target_crops = schemes_df['Target_Crops'].fillna('').str.lower()
# # Check for specific crop first
# schemes = schemes_df[target_crops.str.contains(predicted_crop, case=False, na=False)]
# if not schemes.empty:
# return schemes['Scheme_Name'].tolist()
# # Check for broader categories
# for category, crops in crop_categories.items():
# if predicted_crop in crops:
# crop_pattern = '|'.join(crops)
# schemes = schemes_df[target_crops.str.contains(crop_pattern, case=False, na=False)]
# break
# # Check for "Beans" if specific crop or broader categories did not return any schemes
# if predicted_crop == 'kidneybeans':
# beans_schemes = schemes_df[target_crops.str.contains('beans', case=False, na=False)]
# if not beans_schemes.empty:
# return beans_schemes['Scheme_Name'].tolist()
# # If no schemes found, check for "All crops"
# all_crops_schemes = schemes_df[target_crops.str.contains('all crops', case=False, na=False)]
# if not all_crops_schemes.empty:
# return all_crops_schemes['Scheme_Name'].tolist()
# return [] # Return empty list if no schemes are found
# # Function for plotting graphs
# def plot_graph(x_param, y_param, graph_type):
# plt.figure(figsize=(10, 6))
# if graph_type == 'Scatter':
# for label in df['label'].unique():
# subset = df[df['label'] == label]
# plt.scatter(subset[x_param], subset[y_param], label=label, alpha=0.6)
# elif graph_type == 'Line':
# for label in df['label'].unique():
# subset = df[df['label'] == label]
# plt.plot(subset[x_param], subset[y_param], label=label, marker='o', alpha=0.6)
# elif graph_type == 'Bar':
# for label in df['label'].unique():
# subset = df[df['label'] == label]
# plt.bar(subset[x_param], subset[y_param], label=label, alpha=0.6)
# plt.title(f'{graph_type} plot between {x_param} and {y_param}')
# plt.xlabel(x_param)
# plt.ylabel(y_param)
# plt.legend(title='Crop Type', bbox_to_anchor=(1.05, 1), loc='upper left')
# plt.grid(True)
# plt.tight_layout()
# st.pyplot(plt)
# # Navigation simulation using session state
# if 'page' not in st.session_state:
# st.session_state.page = 'home'
# def navigate_to(page):
# st.session_state.page = page
# # Main app
# if st.session_state.page == 'home':
# st.title("Crop Prediction and Scheme Recommendation")
# st.header("Enter the following details:")
# # Get user input
# N = st.number_input("Nitrogen content (N)", min_value=0, max_value=100, value=50)
# P = st.number_input("Phosphorus content (P)", min_value=0, max_value=100, value=50)
# K = st.number_input("Potassium content (K)", min_value=0, max_value=100, value=50)
# temperature = st.number_input("Temperature (°C)", min_value=0.0, max_value=50.0, value=25.0)
# humidity = st.number_input("Humidity (%)", min_value=0.0, max_value=100.0, value=50.0)
# ph = st.number_input("pH level", min_value=0.0, max_value=14.0, value=7.0)
# rainfall = st.number_input("Rainfall (mm)", min_value=0.0, max_value=500.0, value=100.0)
# # Make prediction when the user clicks the button
# if st.button("Predict Crop"):
# input_data = pd.DataFrame({
# 'N': [N], 'P': [P], 'K': [K],
# 'temperature': [temperature], 'humidity': [humidity],
# 'ph': [ph], 'rainfall': [rainfall]
# })
# # Predict the crop
# predicted_crop = pipe.predict(input_data)[0]
# st.write(f"Predicted Crop: **{predicted_crop}**")
# # Suggest schemes based on the predicted crop
# schemes = suggest_schemes(predicted_crop, 'All India')
# if schemes:
# st.write("Suggested Schemes:")
# for scheme in schemes:
# st.write(f"- {scheme}")
# else:
# st.write("No schemes found for the predicted crop.")
# # Button to navigate to Analysis
# if st.button("Go to Analysis"):
# navigate_to('analysis')
# elif st.session_state.page == 'analysis':
# st.title("Crop Data Analysis")
# # Dropdowns for graph parameters
# parameters = list(df.columns[:-1])
# graph_types = ['Scatter', 'Line', 'Bar']
# x_param = st.selectbox('X Parameter', parameters)
# y_param = st.selectbox('Y Parameter', parameters)
# graph_type = st.selectbox('Graph Type', graph_types)
# # Plot the graph when the user clicks the button
# if st.button("Plot Graph"):
# plot_graph(x_param, y_param, graph_type)
# # Button to go back to Home
# if st.button("Back to Home"):
# navigate_to('home')
# import streamlit as st
# import pandas as pd
# import numpy as np
# import folium
# from sklearn.model_selection import train_test_split
# from sklearn.preprocessing import StandardScaler
# from sklearn.compose import ColumnTransformer
# from sklearn.pipeline import Pipeline
# from sklearn.ensemble import RandomForestClassifier
# import matplotlib.pyplot as plt
# from folium.plugins import MarkerCluster
# from streamlit_folium import folium_static
# df = pd.read_csv('crop_recommendation.csv')
# schemes_df = pd.read_csv('govschemeupdated.csv')
# farm_data = pd.read_csv('crop_farm.csv')
# crop_data = pd.read_csv('crop_farm.csv')
# num_col = ['N', 'P', 'K', 'temperature', 'humidity', 'ph', 'rainfall']
# target_col = 'label'
# X = df[num_col]
# y = df[target_col]
# X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# preprocessor = ColumnTransformer(
# transformers=[('num', StandardScaler(), num_col)]
# )
# model = RandomForestClassifier()
# pipe = Pipeline(steps=[('preprocessor', preprocessor), ('model', model)])
# pipe.fit(X_train, y_train)
# schemes_df.replace('N/A', np.nan, inplace=True)
# schemes_df = schemes_df[
# (schemes_df['Implementation_End_Year'].str.lower() == 'ongoing') &
# (schemes_df['Farmer_Eligibility'].notna()) &
# (schemes_df['Target_Crops'].notna())
# ]
# def suggest_schemes(predicted_crop, region):
# predicted_crop = str(predicted_crop).lower()
# crop_categories = {
# 'fruits': ['banana', 'apple', 'mango', 'grapes', 'orange'],
# 'cereals': ['rice', 'wheat', 'maize'],
# 'beans': ['lentil', 'chickpea', 'black gram', 'kidneybeans'],
# 'nuts': ['peanut', 'almond', 'cashew']
# }
# target_crops = schemes_df['Target_Crops'].fillna('').str.lower()
# schemes = schemes_df[target_crops.str.contains(predicted_crop, case=False, na=False)]
# if not schemes.empty:
# return schemes['Scheme_Name'].tolist()
# for category, crops in crop_categories.items():
# if predicted_crop in crops:
# crop_pattern = '|'.join(crops)
# schemes = schemes_df[target_crops.str.contains(crop_pattern, case=False, na=False)]
# break
# if predicted_crop == 'kidneybeans':
# beans_schemes = schemes_df[target_crops.str.contains('beans', case=False, na=False)]
# if not beans_schemes.empty:
# return beans_schemes['Scheme_Name'].tolist()
# all_crops_schemes = schemes_df[target_crops.str.contains('all crops', case=False, na=False)]
# if not all_crops_schemes.empty:
# return all_crops_schemes['Scheme_Name'].tolist()
# return []
# def plot_graph(x_param, y_param, graph_type):
# plt.figure(figsize=(10, 6))
# if graph_type == 'Scatter':
# for label in df['label'].unique():
# subset = df[df['label'] == label]
# plt.scatter(subset[x_param], subset[y_param], label=label, alpha=0.6)
# elif graph_type == 'Line':
# for label in df['label'].unique():
# subset = df[df['label'] == label]
# plt.plot(subset[x_param], subset[y_param], label=label, marker='o', alpha=0.6)
# elif graph_type == 'Bar':
# for label in df['label'].unique():
# subset = df[df['label'] == label]
# plt.bar(subset[x_param], subset[y_param], label=label, alpha=0.6)
# plt.title(f'{graph_type} plot between {x_param} and {y_param}')
# plt.xlabel(x_param)
# plt.ylabel(y_param)
# plt.legend(title='Crop Type', bbox_to_anchor=(1.05, 1), loc='upper left')
# plt.grid(True)
# plt.tight_layout()
# st.pyplot(plt)
# if 'page' not in st.session_state:
# st.session_state.page = 'home'
# def navigate_to(page):
# st.session_state.page = page
# def create_crop_map():
# crop_map = folium.Map(location=[20.5937, 78.9629], zoom_start=5)
# marker_cluster = MarkerCluster().add_to(crop_map)
# for _, row in crop_data.iterrows():
# folium.Marker(
# location=[row['Latitude'], row['Longitude']],
# popup=f"Crop: {row['Cultivated_Crop']}, N: {row['N']}, P: {row['P']}, K: {row['K']}, Soil Type: {row['Soil_Type']}",
# icon=folium.Icon(color='green')
# ).add_to(marker_cluster)
# return crop_map
# def create_soil_map():
# soil_map = folium.Map(location=[20.5937, 78.9629], zoom_start=5) # Centered on India
# marker_cluster = MarkerCluster().add_to(soil_map)
# for _, row in crop_data.iterrows():
# folium.Marker(
# location=[row['Latitude'], row['Longitude']],
# popup=f"N: {row['N']}, P: {row['P']}, K: {row['K']}, Soil Type: {row['Soil_Type']}",
# icon=folium.Icon(color='blue')
# ).add_to(marker_cluster)
# return soil_map
# # Main app
# if st.session_state.page == 'home':
# st.title("Crop Prediction and Scheme Recommendation")
# st.header("Enter the following details:")
# # Get user input
# N = st.number_input("Nitrogen content (N)", min_value=0, max_value=100, value=68)
# P = st.number_input("Phosphorus content (P)", min_value=0, max_value=100, value=58)
# K = st.number_input("Potassium content (K)", min_value=0, max_value=100, value=38)
# temperature = st.number_input("Temperature (°C)", min_value=0.0, max_value=50.0, value=23.22)
# humidity = st.number_input("Humidity (%)", min_value=0.0, max_value=100.0, value=83.03)
# ph = st.number_input("pH level", min_value=0.0, max_value=14.0, value=6.3)
# rainfall = st.number_input("Rainfall (mm)", min_value=0.0, max_value=500.0, value=221.20)
# # Make prediction when the user clicks the button
# if st.button("Predict Crop"):
# input_data = pd.DataFrame({
# 'N': [N], 'P': [P], 'K': [K],
# 'temperature': [temperature], 'humidity': [humidity],
# 'ph': [ph], 'rainfall': [rainfall]
# })
# # Predict the crop
# predicted_crop = pipe.predict(input_data)[0]
# st.write(f"Predicted Crop: **{predicted_crop}**")
# # Suggest schemes based on the predicted crop
# schemes = suggest_schemes(predicted_crop, 'All India')
# if schemes:
# st.write("Suggested Schemes:")
# for scheme in schemes:
# st.write(f"- {scheme}")
# else:
# st.write("No schemes found for the predicted crop.")
# # Button to navigate to Analysis
# if st.button("Go to Analysis"):
# navigate_to('analysis')
# # Button to navigate to Crop
# if st.button("Go to Map"):
# navigate_to('crop')
# elif st.session_state.page == 'analysis':
# st.title("Crop Data Analysis")
# # Dropdowns for graph parameters
# parameters = list(df.columns[:-1])
# graph_types = ['Scatter', 'Line', 'Bar']
# x_param = st.selectbox('X Parameter', parameters)
# y_param = st.selectbox('Y Parameter', parameters)
# graph_type = st.selectbox('Graph Type', graph_types)
# # Plot the graph when the user clicks the button
# if st.button("Plot Graph"):
# plot_graph(x_param, y_param, graph_type)
# # Button to go back to Home
# if st.button("Go back to Home"):
# navigate_to('home')
# elif st.session_state.page == 'crop':
# st.title("Crop and Soil Distribution Maps")
# # Create maps
# st.header("Crop Distribution Map")
# crop_map = create_crop_map()
# folium_static(crop_map)
# st.header("Soil Data Map")
# soil_map = create_soil_map()
# folium_static(soil_map)
# # Button to go back to Home
# if st.button("Go back to Home"):
# navigate_to('home')
import streamlit as st
import pandas as pd
import numpy as np
import folium
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.compose import ColumnTransformer
from sklearn.pipeline import Pipeline
from sklearn.ensemble import RandomForestClassifier
import matplotlib.pyplot as plt
from folium.plugins import MarkerCluster
from streamlit_folium import folium_static
# Load data
df = pd.read_csv('crop_recommendation.csv')
schemes_df = pd.read_csv('govschemeupdated.csv')
farm_data = pd.read_csv('crop_farm.csv')
crop_data = pd.read_csv('crop_farm.csv')
msp = pd.read_csv('msp_2024.csv')
# Prepare data for model
num_col = ['N', 'P', 'K', 'temperature', 'humidity', 'ph', 'rainfall']
target_col = 'label'
X = df[num_col]
y = df[target_col]
# Train-test split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Preprocessing and model pipeline
preprocessor = ColumnTransformer(
transformers=[('num', StandardScaler(), num_col)]
)
model = RandomForestClassifier()
pipe = Pipeline(steps=[('preprocessor', preprocessor), ('model', model)])
pipe.fit(X_train, y_train)
# Filter schemes for ongoing projects
schemes_df.replace('N/A', np.nan, inplace=True)
schemes_df = schemes_df[
(schemes_df['Implementation_End_Year'].str.lower() == 'ongoing') &
(schemes_df['Farmer_Eligibility'].notna()) &
(schemes_df['Target_Crops'].notna())
]
def suggest_schemes(predicted_crop, region):
predicted_crop = str(predicted_crop).lower()
crop_categories = {
'fruits': ['banana', 'apple', 'mango', 'grapes', 'orange'],
'cereals': ['rice', 'wheat', 'maize'],
'beans': ['lentil', 'chickpea', 'black gram', 'kidneybeans'],
'nuts': ['peanut', 'almond', 'cashew']
}
target_crops = schemes_df['Target_Crops'].fillna('').str.lower()
schemes = schemes_df[target_crops.str.contains(predicted_crop, case=False, na=False)]
if not schemes.empty:
return schemes['Scheme_Name'].tolist()
for category, crops in crop_categories.items():
if predicted_crop in crops:
crop_pattern = '|'.join(crops)
schemes = schemes_df[target_crops.str.contains(crop_pattern, case=False, na=False)]
break
if predicted_crop == 'kidneybeans':
beans_schemes = schemes_df[target_crops.str.contains('beans', case=False, na=False)]
if not beans_schemes.empty:
return beans_schemes['Scheme_Name'].tolist()
all_crops_schemes = schemes_df[target_crops.str.contains('all crops', case=False, na=False)]
if not all_crops_schemes.empty:
return all_crops_schemes['Scheme_Name'].tolist()
return []
def plot_graph(x_param, y_param, graph_type):
plt.figure(figsize=(10, 6))
if graph_type == 'Scatter':
for label in df['label'].unique():
subset = df[df['label'] == label]
plt.scatter(subset[x_param], subset[y_param], label=label, alpha=0.6)
elif graph_type == 'Line':
for label in df['label'].unique():
subset = df[df['label'] == label]
plt.plot(subset[x_param], subset[y_param], label=label, marker='o', alpha=0.6)
elif graph_type == 'Bar':
for label in df['label'].unique():
subset = df[df['label'] == label]
plt.bar(subset[x_param], subset[y_param], label=label, alpha=0.6)
plt.title(f'{graph_type} plot between {x_param} and {y_param}')
plt.xlabel(x_param)
plt.ylabel(y_param)
plt.legend(title='Crop Type', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.grid(True)
plt.tight_layout()
st.pyplot(plt)
if 'page' not in st.session_state:
st.session_state.page = 'analysis'
def navigate_to(page):
st.session_state.page = page
def create_crop_map():
crop_map = folium.Map(location=[20.5937, 78.9629], zoom_start=8)
marker_cluster = MarkerCluster().add_to(crop_map)
for _, row in crop_data.iterrows():
folium.Marker(
location=[row['Latitude'], row['Longitude']],
popup=f"Crop: {row['Cultivated_Crop']}, N: {row['N']}, P: {row['P']}, K: {row['K']}, Soil Type: {row['Soil_Type']}",
icon=folium.Icon(color='green')
).add_to(marker_cluster)
return crop_map
def create_soil_map():
soil_map = folium.Map(location=[20.5937, 78.9629], zoom_start=5) # Centered on India
marker_cluster = MarkerCluster().add_to(soil_map)
for _, row in crop_data.iterrows():
folium.Marker(
location=[row['Latitude'], row['Longitude']],
popup=f"N: {row['N']}, P: {row['P']}, K: {row['K']}, Soil Type: {row['Soil_Type']}",
icon=folium.Icon(color='blue')
).add_to(marker_cluster)
return soil_map
def get_crop_parameters(crop_name):
crop_name = crop_name.lower()
crop_info = df[df['label'].str.lower() == crop_name]
if not crop_info.empty:
parameters = crop_info.iloc[0][num_col].to_dict()
return parameters
else:
return None
def get_suitable_locations(crop_name, humidity_range, rainfall_range):
# Sample data for locations (you can replace this with your actual data source)
locations_data = [
{'name': 'Nagpur', 'humidity': 85, 'rainfall': 150},
{'name': 'Pune', 'humidity': 60, 'rainfall': 100},
{'name': 'Hyderabad', 'humidity': 90, 'rainfall': 120},
{'name': 'Mumbai', 'humidity': 95, 'rainfall': 200},
{'name': 'Delhi', 'humidity': 70, 'rainfall': 80},
{'name': 'Bangalore', 'humidity': 65, 'rainfall': 130},
{'name': 'Chennai', 'humidity': 80, 'rainfall': 160},
{'name': 'Kolkata', 'humidity': 78, 'rainfall': 170},
{'name': 'Ahmedabad', 'humidity': 55, 'rainfall': 90},
{'name': 'Jaipur', 'humidity': 45, 'rainfall': 70},
{'name': 'Lucknow', 'humidity': 65, 'rainfall': 110},
{'name': 'Bhopal', 'humidity': 58, 'rainfall': 95},
{'name': 'Indore', 'humidity': 52, 'rainfall': 85},
{'name': 'Surat', 'humidity': 72, 'rainfall': 120},
{'name': 'Visakhapatnam', 'humidity': 75, 'rainfall': 140},
{'name': 'Patna', 'humidity': 68, 'rainfall': 105},
{'name': 'Vadodara', 'humidity': 62, 'rainfall': 95},
{'name': 'Guwahati', 'humidity': 78, 'rainfall': 180},
{'name': 'Coimbatore', 'humidity': 70, 'rainfall': 95},
{'name': 'Kochi', 'humidity': 85, 'rainfall': 250},
{'name': 'Thiruvananthapuram', 'humidity': 80, 'rainfall': 180},
{'name': 'Bhubaneswar', 'humidity': 75, 'rainfall': 150},
{'name': 'Raipur', 'humidity': 62, 'rainfall': 130},
{'name': 'Chandigarh', 'humidity': 55, 'rainfall': 110},
{'name': 'Ranchi', 'humidity': 65, 'rainfall': 140},
{'name': 'Agra', 'humidity': 58, 'rainfall': 85},
{'name': 'Varanasi', 'humidity': 70, 'rainfall': 100},
{'name': 'Amritsar', 'humidity': 60, 'rainfall': 70},
{'name': 'Jodhpur', 'humidity': 40, 'rainfall': 35},
{'name': 'Dehradun', 'humidity': 72, 'rainfall': 200},
]
suitable_locations = []
for location in locations_data:
# Check if the location's humidity and rainfall fall within the specified ranges
if (humidity_range[0] <= location['humidity'] <= humidity_range[1] and
rainfall_range[0] <= location['rainfall'] <= rainfall_range[1]):
suitable_locations.append(location['name'])
return suitable_locations
# Main app
if st.session_state.page == 'home':
st.title("Crop Prediction and Scheme Recommendation")
st.header("Enter the following details:")
# Get user input for crop prediction
N = st.number_input("Nitrogen content (N)", min_value=0, max_value=100, value=68)
P = st.number_input("Phosphorus content (P)", min_value=0, max_value=100, value=58)
K = st.number_input("Potassium content (K)", min_value=0, max_value=100, value=38)
temperature = st.number_input("Temperature (°C)", min_value=0.0, max_value=50.0, value=23.22)
humidity = st.number_input("Humidity (%)", min_value=0.0, max_value=100.0, value=83.03)
ph = st.number_input("pH level", min_value=0.0, max_value=14.0, value=6.3)
rainfall = st.number_input("Rainfall (mm)", min_value=0.0, max_value=500.0, value=221.20)
if st.button("Predict Crop"):
input_data = pd.DataFrame({
'N': [N], 'P': [P], 'K': [K],
'temperature': [temperature], 'humidity': [humidity],
'ph': [ph], 'rainfall': [rainfall]
})
# Predict the top 3 crops
predicted_probabilities = pipe.predict_proba(input_data)[0]
top_3_indices = predicted_probabilities.argsort()[-3:][::-1]
top_3_crops = [pipe.classes_[index] for index in top_3_indices]
st.write("Predicted Crops:")
# Display each crop in a card format
for i, crop in enumerate(top_3_crops, start=1):
# Get suggested schemes for the crop
schemes = suggest_schemes(crop, 'All India')
# Format schemes as bullet points
scheme_list = ""
if schemes:
scheme_list = "<ul>" + "".join(f"<li>{scheme}</li>" for scheme in schemes) + "</ul>"
else:
scheme_list = "<p>No schemes found.</p>"
# Create the card using markdown
card_html = f"""
<div style="
border: 1px solid #ddd;
border-radius: 10px;
padding: 20px;
margin-bottom: 10px;
box-shadow: 2px 2px 12px rgba(0, 0, 0, 0.1);
">
<h3 style="color: #5e0797;">{i}. {crop}</h3>
<strong>Suggested Schemes:</strong>
{scheme_list}
</div>
"""
st.markdown(card_html, unsafe_allow_html=True)
# if not found_scheme:
# st.write("No schemes found for the predicted crops.")
# Button to navigate to Analysis
if st.button("Go to Analysis"):
navigate_to('analysis')
# Button to navigate to Crop
if st.button("Go to Map"):
navigate_to('crop')
# Button to navigate to Farm Check
if st.button("Go to Farm Check"):
navigate_to('farm_check')
elif st.session_state.page == 'analysis':
st.title("Crop Data Analysis")
# Dropdowns for graph parameters
parameters = list(df.columns[:-1])
graph_types = ['Scatter', 'Line', 'Bar']
x_param = st.selectbox('X Parameter', parameters)
y_param = st.selectbox('Y Parameter', parameters)
graph_type = st.selectbox('Graph Type', graph_types)
# Plot graph based on selections
plot_graph(x_param, y_param, graph_type)
# Button to navigate back to Home
if st.button("Back to Home"):
navigate_to('home')
# Button to navigate to Crop
if st.button("Go to Map"):
navigate_to('crop')
# Button to navigate to Farm Check
if st.button("Go to Farm Check"):
navigate_to('farm_check')
elif st.session_state.page == 'crop':
st.title("Crop Distribution Map")
crop_map = create_crop_map()
folium_static(crop_map)
# Button to navigate back to Home
if st.button("Back to Home"):
navigate_to('home')
# Button to navigate to Analysis
if st.button("Go to Analysis"):
navigate_to('analysis')
# Button to navigate to Farm Check
if st.button("Go to Farm Check"):
navigate_to('farm_check')
elif st.session_state.page == 'farm_check':
st.title("Farm Check")
crop_name = st.text_input("Enter Crop Name:")
if st.button("Check"):
crop_params = get_crop_parameters(crop_name)
if crop_params:
st.write(f"Parameters for {crop_name}:")
for param, value in crop_params.items():
st.write(f"{param}: {value}")
# Extract humidity and rainfall from crop parameters
humidity = crop_params.get("humidity")
rainfall = crop_params.get("rainfall")
# Define ranges for humidity and rainfall
if humidity is not None and rainfall is not None:
humidity_range = (humidity - 10, humidity + 10) # Example range
rainfall_range = (rainfall - 50, rainfall + 50) # Example range
st.write(f"Humidity Range for {crop_name}: {humidity_range[0]} - {humidity_range[1]}")
st.write(f"Rainfall Range for {crop_name}: {rainfall_range[0]} - {rainfall_range[1]}")
# Get suitable locations based on ranges
suitable_locations = get_suitable_locations(crop_name, humidity_range, rainfall_range)
if suitable_locations:
st.write(f"Suitable locations for {crop_name}:")
for location in suitable_locations:
st.write(f"- {location}")
else:
st.write(f"No suitable locations found for {crop_name}.")
else:
st.write("Humidity or Rainfall data is not available for this crop.")
else:
st.write(f"Crop {crop_name} not found in the dataset.")
# Button to navigate back to Home
if st.button("Back to Home"):
navigate_to('home')
# Button to navigate to Analysis
if st.button("Go to Analysis"):
navigate_to('analysis')
# Button to navigate to Crop
if st.button("Go to Map"):
navigate_to('crop')