-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdecison_tree.py
409 lines (334 loc) · 13.5 KB
/
decison_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
import numpy as np
from ..base import BaseClassifier,BaseRegressor
from copy import deepcopy
import matplotlib.pyplot as plt
# import graphviz
class Node:
''' Node of a Decision tree'''
def __init__(self,criterion,idx_feature,gini = None,categorial = False):
self.criterion = criterion
self.idx_feature = idx_feature
self.left = None
self.right = None
self.gini = gini
self.categorial = categorial
self.pruned = False
@property
def depth(self):
return max(self.left.depth,self.right.depth) + 1
@property
def width(self):
raise NotImplementedError
@property
def size(self):
'''return number of leaves and nodes in the tree '''
return self.left.size + self.right.size + 1
def split_data(self,X):
if self.categorial :
left,right = np.where(X[:,self.idx_feature] == self.criterion),np.where(X[:,self.idx_feature] != self.criterion)
else :
left,right = np.where(X[:,self.idx_feature] < self.criterion),np.where(X[:,self.idx_feature] >= self.criterion)
return left,right
def predict(self,X):
left,right = self.split_data(X)
prediction = np.zeros(X.shape[0])
prediction[left] = self.left.predict(X[left])
prediction[right] = self.right.predict(X[right])
return prediction
def _count_preleaf(self):
if isinstance(self.left,Leaf) :
if isinstance(self.right,Leaf) :
return 1
else :
return self.right._count_preleaf()
elif isinstance(self.right,Leaf) :
return self.left._count_preleaf()
else :
return self.right._count_preleaf() + self.left._count_preleaf()
def _define_position(self,position = (0,0)):
self.pos = position
d = self.depth
self.left._define_position((self.pos[0]-2**d,self.pos[1]-1))
self.right._define_position((self.pos[0]+2**d,self.pos[1]-1))
def _get_tree_data(self):
d = {}
d['type'] = 'node'
d['pos'] = self.pos
d['feature'] = self.idx_feature
d['criterion'] = self.criterion
d['categorical'] = self.categorial
arr = [d]
l = self.left._get_tree_data()
r = self.right._get_tree_data()
l[0]['parent_pos'] = self.pos
r[0]['parent_pos'] = self.pos
arr.extend(l)
arr.extend(r)
return arr
def display(self,pos=(0,0)):
self._define_position(pos)
tree = self._get_tree_data()
for n in tree :
pos = np.array(n['pos'])
if n['type'] == 'node' :
if n['categorical'] :
sign = '='
else :
sign = '<'
if isinstance(n['criterion'],float):
n['criterion'] = int(n['criterion']*100)/100
s= 'Feat '+str(n['feature'])+sign+str(n['criterion'])
elif n['type'] == 'leaf' :
if isinstance(n['decision'],float):
n['decision'] = int(n['decision']*100)/100
s = str(n['decision'])
else :
raise Exception("Node type cannot be displayed")
plt.text(*pos,s,bbox=dict(facecolor='white'),horizontalalignment='center', verticalalignment='center',)
if 'parent_pos' in n : ## If not top of the tree
line = np.array([n['pos'],n['parent_pos']])
plt.plot(line[:,0],line[:,1])
plt.axis('off')
plt.tight_layout()
plt.show(block=False)
class Leaf(Node):
''' A leaf is a node at the bottom of the tree, it takes the decision'''
def __init__(self,decision):
self.criterion = None
self.idx_feature = None
self.left = None
self.right = None
self.decision = decision
@property
def depth(self):
return 0
@property
def size(self):
return 1
def split_data(self,X):
pass
def predict(self,X):
return np.ones(X.shape[0])*self.decision
def _define_position(self,position):
self.pos = position
def _get_tree_data(self):
d = {}
d['type'] = 'leaf'
d['pos'] = self.pos
d['feature'] = self.idx_feature
d['criterion'] = self.criterion
d['decision'] = self.decision
return [d]
def gini_index(groups,class_labels):
''' Compute Gini index for a given split for classification
Parameters
----------
groups : list of array,
groups decided by the split, array is the list of the true labels
class_labels : list
labels given by the split
Yield
-----
gini : float,
gini index
'''
counts = [len(group) for group in groups]
n_samples = np.sum(counts)
gini = 0
for i in range(len(groups)):
if counts[i] == 0:
continue
score = 0
for label in class_labels :
proportion = np.sum(groups[i] == label) / counts[i]
score += proportion**2
gini += (1-score) * (counts[i]/n_samples)
return gini
class BaseDecisionTree:
def __init__(self,max_depth=6,min_samples_split=2,categorial_features = [],eps=0.02,pruning_eps=0.05):
self.max_depth = max_depth
self.min_samples_split = min_samples_split
self.categorial_features = categorial_features
self.eps = eps
self.pruning_eps = pruning_eps
self.tree = None
@property
def depth(self):
return self.tree.depth
def display(self):
if self.tree is None :
raise Exception('The tree is not created')
else :
self.tree.display()
def fit(self,X,y,prune = True):
self.tree = self.build_node(X,y,0)
if prune :
self.prune(X,y)
def _create_leaf(self,y):
raise Exception
def get_best_split(self,X,y):
raise Exception
def _create_pruned_tree(self,node,X,y,n):
if isinstance(node.left,Leaf) :
if isinstance(node.right,Leaf) :
return True,n
else :
left,right = node.split_data(X)
temp_right,n = self._create_pruned_tree(node.right,X[right],y[right],n)
if temp_right == 'done' :
return 'done',n
elif temp_right == True :
n -= 1
if n == 0 :
node.right = self._create_leaf(y)
return 'done',n
elif isinstance(node.right,Leaf) :
left,right = node.split_data(X)
temp_left,n = self._create_pruned_tree(node.left,X[left],y[left],n)
if temp_left == 'done' :
return 'done',n
elif temp_left == True :
n -= 1
if n == 0 :
node.left = self._create_leaf(y)
return 'done',n
elif not isinstance(node,Leaf):
left,right = node.split_data(X)
temp_left,n = self._create_pruned_tree(node.left,X[left],y[left],n)
if temp_left == 'done' :
return 'done',n
elif temp_left == True :
n -= 1
if n == 0 :
node.left = self._create_leaf(y)
return 'done',n
temp_right,n = self._create_pruned_tree(node.right,X[right],y[right],n)
if temp_right == 'done' :
return 'done',n
elif temp_right == True :
n -= 1
if n == 0 :
node.right = self._create_leaf(y)
return 'done',n
return False,n
def get_pruned_trees(self,X,y):
tree_list = []
if self.tree.depth > 2 :
# Get all possible pruned trees
n_pruned_trees = self.tree._count_preleaf()
for i in range(n_pruned_trees):
new_tree = deepcopy(self.tree)
self._create_pruned_tree(new_tree,X,y,n=i+1)
tree_list.append(new_tree)
return tree_list
def _bottom_up_pruning(self,X,y):
raise NotImplementedError
def _top_down_pruning(self,X,y):
raise NotImplementedError
def prune(self,X,y,method='bottom_up'):
if method == 'bottom_up':
self._bottom_up_pruning(X,y)
elif method == 'top_down':
self._top_down_pruning(X,y)
def build_node(self,X,y,depth):
idx,score,groups_idx = self.get_best_split(X,y) # Get the best split
current_node = Node(X[idx[0],idx[1]],idx[1],score,categorial= (idx[1] in self.categorial_features))
# Create a leaf (end of the tree)
if self.max_depth <= depth+1 or self.min_samples_split >= X.shape[0] or score < self.eps:
current_node = self._create_leaf(y)
else :
# Build the children nodes
current_node.left = self.build_node(X[groups_idx[0]],y[groups_idx[0]],depth+1)
current_node.right = self.build_node(X[groups_idx[1]],y[groups_idx[1]],depth+1)
return current_node
def predict(self,X):
return self.tree.predict(X)
class DecisionTreeClassifier(BaseDecisionTree,BaseClassifier):
''' CART Decision tree classifier
Parameters
----------
max_depth :int ,
maximum depth of the tree
min_samples_split : int,
minimum number of samples in order to create a split
categorical_features : list,
list of features which are categorical (index of the column)
'''
def get_best_split(self,X,y):
''' get the best one split possible '''
best_score = np.inf
labels = np.unique(y)
for j in range(X.shape[1]):
# iterate on unique value of features
for i in np.unique(X[:,j],return_index=True)[1]:
# Split data
if j in self.categorial_features :
groups = np.where(X[:,j]==X[i,j])[0], np.where(X[:,j]!=X[i,j])[0]
else :
groups = np.where(X[:,j]<X[i,j])[0], np.where(X[:,j]>=X[i,j])[0]
gini = gini_index([[y[groups[0]]][0],[y[groups[1]]][0]],labels)
if gini < best_score: # If better keep
best_score = gini
best_idx = i,j
best_groups = groups
return best_idx,best_score,best_groups
def _create_leaf(self,y):
return Leaf(decision = np.bincount(y).argmax())
def _bottom_up_pruning(self,X,y):
tree_list = self.get_pruned_trees(X,y)
score = self.score(X,y)
for new_tree in tree_list:
tmp_decision_tree = deepcopy(self)
tmp_decision_tree.tree = new_tree
if tmp_decision_tree.score(X,y) >= (score - self.pruning_eps) : # Pruning is successful
self.tree = new_tree
self._bottom_up_pruning(X,y) # Try pruning some more based on the new tree
break
class DecisionTreeRegressor(BaseDecisionTree,BaseRegressor):
''' CART Decision tree regressor
Parameters
----------
max_depth :int ,
maximum depth of the tree
min_samples_split : int,
minimum number of samples in order to create a split
categorical_features : list,
list of features which are categorical (index of the column)
metric : string,
metric used to choose the best split
'''
def __init__(self,max_depth=10,min_samples_split=2,categorial_features = [],eps=0,pruning_eps=2,metric = "mse"):
super().__init__(max_depth=max_depth,min_samples_split=min_samples_split,categorial_features=categorial_features,eps=eps,pruning_eps=pruning_eps)
assert metric in ["mse","mae"], "Metric must one of the followwing : mse,mae"
self.metric = metric # ignored for now
def get_best_split(self,X,y):
''' get the best one split possible '''
best_score = np.inf
labels = np.unique(y)
for j in range(X.shape[1]):
# iterate on unique value of features
for i in np.unique(X[:,j],return_index=True)[1]:
# Split data
if j in self.categorial_features :
groups = np.where(X[:,j]==X[i,j])[0], np.where(X[:,j]!=X[i,j])[0]
else :
groups = np.where(X[:,j]<X[i,j])[0], np.where(X[:,j]>=X[i,j])[0]
n_samples = np.sum([len(group) for group in groups])
score = np.sum([np.square(group-np.mean(group)).sum() * len(group)/n_samples for group in groups])
if score < best_score: # If better keep
best_score = score
best_idx = i,j
best_groups = groups
return best_idx,best_score,best_groups
def _create_leaf(self,y):
return Leaf(decision = np.mean(y))
def _bottom_up_pruning(self,X,y):
tree_list = self.get_pruned_trees(X,y)
score = self.score(X,y)
for new_tree in tree_list:
tmp_decision_tree = deepcopy(self)
tmp_decision_tree.tree = new_tree
if tmp_decision_tree.score(X,y) <= (score +self.pruning_eps) : # Successful pruning
self.tree = new_tree
self._bottom_up_pruning(X,y) # Try pruning some more based on the new tree
break